Practical pulse engineering: Gradient ascent without matrix exponentiation

被引:12
作者
Bhole, Gaurav [1 ]
Jones, Jonathan A. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Ctr Quantum Computat, Parks Rd, Oxford OX1 3PU, England
关键词
quantum information; coherent control; pulse sequences in nuclear magnetic resonance;
D O I
10.1007/s11467-018-0791-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.
引用
收藏
页数:6
相关论文
共 26 条
[1]   A NEW SCALING AND SQUARING ALGORITHM FOR THE MATRIX EXPONENTIAL [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) :970-989
[2]  
[Anonymous], 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
[3]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[4]  
Bhole G., 2017, ARXIV170702162
[5]   Steering quantum dynamics via bang-bang control: Implementing optimal fixed-point quantum search algorithm [J].
Bhole, Gaurav ;
Anjusha, V. S. ;
Mahesh, T. S. .
PHYSICAL REVIEW A, 2016, 93 (04)
[6]   Resonator reset in circuit QED by optimal control for large open quantum systems [J].
Boutin, Samuel ;
Andersen, Christian Kraglund ;
Venkatraman, Jayameenakshi ;
Ferris, Andrew J. ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2017, 96 (04)
[7]   Chopped random-basis quantum optimization [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (02)
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[10]   Second order gradient ascent pulse engineering [J].
de Fouquieres, P. ;
Schirmer, S. G. ;
Glaser, S. J. ;
Kuprov, Ilya .
JOURNAL OF MAGNETIC RESONANCE, 2011, 212 (02) :412-417