Updates on the Radar Data Quality Control in the MRMS Quantitative Precipitation Estimation System

被引:16
作者
Tang, Lin [1 ]
Zhang, Jian [2 ]
Simpson, Micheal [1 ]
Arthur, Ami [1 ]
Grams, Heather [3 ]
Wang, Yadong [4 ]
Langston, Carrie [1 ]
机构
[1] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA
[2] NOAA, OAR, Natl Severe Storms Lab, Norman, OK USA
[3] NOAA, NWS, Radar Operat Ctr, Norman, OK USA
[4] Southern Illinois Univ Edwardsville, Elect & Comp Engn, Edwardsville, IL USA
关键词
WIND TURBINE CLUTTER; MELTING LAYER; NONPRECIPITATING ECHOES; FUZZY-LOGIC; AUTOMATED DETECTION; ALGORITHM; CLASSIFICATION; POLARIZATION; DISCRIMINATE;
D O I
10.1175/JTECH-D-19-0165.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Multi-Radar-Multi-Sensor (MRMS) system was transitioned into operations at the National Centers for Environmental Prediction in the fall of 2014. It provides high-quality and high-resolution severe weather and precipitation products for meteorology, hydrology, and aviation applications. Among processing modules, the radar data quality control (QC) plays a critical role in effectively identifying and removing various nonhydrometeor radar echoes for accurate quantitative precipitation estimation (QPE). Since its initial implementation in 2014, the radar QC has undergone continuous refinements and enhancements to ensure its robust performance across seasons and all regions in the continental United States and southern Canada. These updates include 1) improved melting-layer delineation, 2) clearance of wind farm contamination, 3) mitigation of corrupt data impacts due to hardware issues, 4) mitigation of sun spikes, and 5) mitigation of residual ground/lake/sea clutter due to sidelobe effects and anomalous propagation. This paper provides an overview of the MRMS radar data QC enhancements since 2014.
引用
收藏
页码:1521 / 1537
页数:17
相关论文
共 51 条
[11]   A fuzzy logic technique for identifying nonprecipitating echoes in radar scans [J].
Berenguer, Marc ;
Sempere-Torres, Daniel ;
Corral, Carles ;
Sanchez-Diezma, Rafael .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2006, 23 (09) :1157-1180
[12]   Freezing-level estimation with polarimetric radar [J].
Brandes, EA ;
Ikeda, K .
JOURNAL OF APPLIED METEOROLOGY, 2004, 43 (11) :1541-1553
[13]   Recent advances in classification of observations from dual polarization weather radars [J].
Chandrasekar, V. ;
Keranen, R. ;
Lim, S. ;
Moisseev, D. .
ATMOSPHERIC RESEARCH, 2013, 119 :97-111
[14]  
Cheong BL, 2011, IEEE RAD CONF, P271
[15]  
FABRY F, 1995, J ATMOS SCI, V52, P838, DOI 10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO
[16]  
2
[17]   Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar [J].
Giangrande, Scott E. ;
Krause, John M. ;
Ryzhkov, Alexander V. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (05) :1354-1364
[18]  
Gourley JJ, 2003, WEATHER FORECAST, V18, P585, DOI 10.1175/1520-0434(2003)018<0585:ADOTBB>2.0.CO
[19]  
2
[20]   A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations [J].
Gourley, Jonathan J. ;
Tabary, Pierre ;
Du Chatelet, Jacques Parent .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2007, 24 (08) :1439-1451