Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders

被引:38
|
作者
Bernard, Patrick [1 ,4 ]
Kaloshin, Vadim [2 ,5 ]
Zhang, Ke [3 ,6 ]
机构
[1] PSL Res Univ, Paris, France
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Univ Toronto, 100 Coll St, Toronto, ON M4X 1K9, Canada
[4] PSL Res Univ, Ecole Normale Super, Dept Math Appl, UMR CNRS 8553, 45 Rue dUlm, F-75230 Paris 05, France
[5] Univ Maryland, Dept Math, 3111 Math Bldg, College Pk, MD 20740 USA
[6] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
VARIATIONAL CONSTRUCTION; HAMILTONIAN-SYSTEMS; ORBITS; INSTABILITY; EXISTENCE; EXAMPLE; TORI;
D O I
10.1007/s11511-016-0141-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a form of Arnold diffusion in the a-priori stable case. Let H0(p)+ϵH1(θ,p,t),θ∈Tn,p∈Bn,t∈T=R/T,be a nearly integrable system of arbitrary degrees of freedom n⩾ 2 with a strictly convex H0. We show that for a “generic” ϵH1, there exists an orbit (θ, p) satisfying ‖p(t)-p(0)‖>l(H1)>0,where l(H1) is independent of ϵ. The diffusion orbit travels along a codimension-1 resonance, and the only obstruction to our construction is a finite set of additional resonances. For the proof we use a combination of geometric and variational methods, and manage to adapt tools which have recently been developed in the a-priori unstable case. © 2017, Institut Mittag-Leffler.
引用
收藏
页码:1 / 79
页数:79
相关论文
共 19 条