An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries

被引:30
|
作者
Wang, Qinglei [1 ,3 ]
Dong, Tiantian [1 ,2 ]
Zhou, Qian [1 ]
Cui, Zili [1 ]
Shangguan, Xuehui [3 ]
Lu, Chenglong [1 ]
Lv, Zhaolin [1 ]
Chen, Kai [1 ]
Huang, Lang [1 ]
Zhang, Huanrui [1 ]
Cui, Guanglei [1 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266042, Peoples R China
[3] Linyi Univ, Sch Mat Sci & Engn, Linyi 276000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
composite solid-state electrolyte; in-situ; lithium metal batteries; high-voltage; POLYMER ELECTROLYTES; CONDUCTIVITY ENHANCEMENT; IONIC-CONDUCTIVITY; TEMPERATURE;
D O I
10.1007/s11426-022-1221-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The solid-state electrolyte (SSE) has promising applications in next-generation lithium (Li) metal batteries (LMBs) because of its significantly enhanced safety and more compatible interface characteristics than flammable traditional liquid electrolytes. However, only a few attempts have achieved high-performance high-voltage LMBs, which is attributed to the fact that both high ionic conductivity and good compatibility with electrodes can hardly be achieved simultaneously. Herein, a composite solid-state electrolyte (CSE) based on star-shaped siloxane-based polymer electrolyte coupled with Li6.75La3Zr1.75Ta0.25O12 (LLZTO) ceramic fillers is designed and prepared through a facile in-situ polymerization method. The obtained CSE exhibits high ionic conductivity (i.e., 1.68 x 10(-4) S cm(-1) at a temperature of 60 degrees C), superior anodic stability, and high Li-ion transference number (i.e., 0.53) because of the multifunctional synergistic effect of the polymer electrolyte with LLZTO ceramic fillers. Moreover, the as-developed CSE shows excellent compatibility with Li anodes. As a result, the as-developed CSE enables the development of long-life 4.4-V-class solid-state LMBs with a LiCoO2 cathode, with 79.7% capacity retention and 99.74% average Coulombic efficiency after 500 cycles at a 0.5 C rate. Postmortem analysis of cycled batteries confirms that such superior battery performance can be mainly ascribed to the formation of a compatible electrode/electrolyte interface. Furthermore, excellent safety features can be observed in LiCoO2/Li pouch batteries. This work provides an important guide for the rational design of SSEs for high-voltage LMBs.
引用
收藏
页码:934 / 942
页数:9
相关论文
共 50 条
  • [1] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China Chemistry, 2022, 65 : 934 - 942
  • [2] In-Situ Polymerized High-Voltage Solid-State Lithium Metal Batteries with Dual-Reinforced Stable Interfaces
    Lv, Qiang
    Li, Cheng
    Liu, Yue
    Jing, Yutong
    Sun, Jianguo
    Wang, Haimei
    Wang, Lei
    Ren, Huaizheng
    Wu, Bochen
    Cheng, Tao
    Wang, Dianlong
    Liu, Huakun
    Dou, Shi-Xue
    Wang, Bo
    Wang, John
    ACS NANO, 2024, 18 (34) : 23253 - 23264
  • [3] Combinatorial Printing of Functionally Graded Solid-State Electrolyte for High-Voltage Lithium Metal Batteries
    Jiang, Qiang
    Atampugre, Stephanie
    Du, Yipu
    Yang, Lingyu
    Schaefer, Jennifer L.
    Zhang, Yanliang
    ACS MATERIALS LETTERS, 2024, 6 (06): : 2205 - 2212
  • [4] Green Polymer Electrolytes Based on Polycaprolactones for Solid-State High-Voltage Lithium Metal Batteries
    Chen, Yi-Hsuan
    Hsieh, Yi-Chen
    Liu, Kun Ling
    Wichmann, Lennart
    Thienenkamp, Johannes Helmut
    Choudhary, Aditya
    Bedrov, Dmitry
    Winter, Martin
    Brunklaus, Gunther
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (20)
  • [5] Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery
    Wang, Chen
    Wang, Tao
    Wang, Longlong
    Hu, Zhenglin
    Cui, Zili
    Li, Jiedong
    Dong, Shanmu
    Zhou, Xinhong
    Cui, Guanglei
    ADVANCED SCIENCE, 2019, 6 (22)
  • [6] Lithium difluorophosphate-modified PEO-based solid-state electrolyte for high-voltage lithium batteries
    Tan, Jiaxu
    Li, Xinhai
    Li, Qihou
    Wang, Zhixing
    Guo, Huajun
    Yan, Guochun
    Wang, Jiexi
    Li, Guangchao
    IONICS, 2022, 28 (07) : 3233 - 3241
  • [7] In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long-Cycle High-Voltage Solid-State Lithium Batteries
    Yang, Hua
    Zhang, Bo
    Jing, Maoxiang
    Shen, Xiangqian
    Wang, Li
    Xu, Hong
    Yan, Xiaohong
    He, Xiangming
    ADVANCED ENERGY MATERIALS, 2022, 12 (39)
  • [8] High-Voltage Solid-State Lithium Metal Batteries with Stable Anodic and Cathodic Interfaces by a Laminated Solid Polymer Electrolyte
    Yuan, Yan
    Wang, Bin
    Xue, Kesi
    Ma, Yitian
    Liu, Xuyi
    Peng, Xiuping
    Liu, Manbo
    Lu, Hai
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (13) : 17144 - 17151
  • [9] Lithium difluorophosphate–modified PEO-based solid-state electrolyte for high-voltage lithium batteries
    Jiaxu Tan
    Xinhai Li
    Qihou Li
    Zhixing Wang
    Huajun Guo
    Guochun Yan
    Jiexi Wang
    Guangchao Li
    Ionics, 2022, 28 : 3233 - 3241
  • [10] Ultrathin and Robust Composite Electrolyte for Stable Solid-State Lithium Metal Batteries
    Ma, Yuetao
    Wang, Chengrui
    Yang, Ke
    Li, Boyu
    Li, Yuhang
    Guo, Shaoke
    Lv, Jianshuai
    An, Xufei
    Liu, Ming
    He, Yan-Bing
    Kang, Feiyu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 17978 - 17985