Depth-based Obstacle Avoidance through Deep Reinforcement Learning

被引:8
作者
Wu, Keyu [1 ]
Esfahani, Mahdi Abolfazli [1 ]
Yuan, Shenghai [1 ]
Wang, Han [1 ]
机构
[1] Nanyang Technol Univ, 50 Nanyang Ave, Singapore 639798, Singapore
来源
PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND ROBOTICS ENGINEERING (ICMRE 2019) | 2019年
关键词
Deep Reinforcement Learning; Obstacle Avoidance;
D O I
10.1145/3314493.3314495
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Obstacle avoidance is an indispensable technique for mobile robots to maneuver safely without collision. In this paper, we propose an end-to-end deep neural network to derive control commands directly from the raw depth images using deep reinforcement learning. The convolutional neural networks are used to extract the feature representation from the input depth images and the fully connected neural networks subsequently map the features to Q-values for determination of the optimal action. To improve the performance of the network, we adopt a two-stage method so that noisy fully connected layers are employed at the beginning while conventional ones are utilized during the second stage of training. Compared to the existing method, our proposed model exhibits much better performance in avoiding obstacles and converges faster during training.
引用
收藏
页码:102 / 106
页数:5
相关论文
共 13 条
  • [1] Altaf Meteb M., 2015, International Journal of Machine Learning and Computing, V5, P235, DOI 10.7763/IJMLC.2015.V5.513
  • [2] [Anonymous], ARXIV180306773
  • [3] [Anonymous], 2017, ARXIV PREPRINT ARXIV
  • [4] Fortunato M., 2017, Noisy networks for exploration
  • [5] Mnih V., 2013, P NEURIPS DEEP LEARN
  • [6] Human-level control through deep reinforcement learning
    Mnih, Volodymyr
    Kavukcuoglu, Koray
    Silver, David
    Rusu, Andrei A.
    Veness, Joel
    Bellemare, Marc G.
    Graves, Alex
    Riedmiller, Martin
    Fidjeland, Andreas K.
    Ostrovski, Georg
    Petersen, Stig
    Beattie, Charles
    Sadik, Amir
    Antonoglou, Ioannis
    King, Helen
    Kumaran, Dharshan
    Wierstra, Daan
    Legg, Shane
    Hassabis, Demis
    [J]. NATURE, 2015, 518 (7540) : 529 - 533
  • [7] Pandey A., 2017, Int. Robotics Autom. J., V2, P96, DOI DOI 10.15406/IRATJ.2017.02.00023
  • [8] Shixiang Gu, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3389, DOI 10.1109/ICRA.2017.7989385
  • [9] Mastering the game of Go with deep neural networks and tree search
    Silver, David
    Huang, Aja
    Maddison, Chris J.
    Guez, Arthur
    Sifre, Laurent
    van den Driessche, George
    Schrittwieser, Julian
    Antonoglou, Ioannis
    Panneershelvam, Veda
    Lanctot, Marc
    Dieleman, Sander
    Grewe, Dominik
    Nham, John
    Kalchbrenner, Nal
    Sutskever, Ilya
    Lillicrap, Timothy
    Leach, Madeleine
    Kavukcuoglu, Koray
    Graepel, Thore
    Hassabis, Demis
    [J]. NATURE, 2016, 529 (7587) : 484 - +
  • [10] Van Hasselt H, 2016, AAAI, V2, P5