Radial solutions for a nonlocal boundary value problem

被引:8
作者
Enguica, Ricardo
Sanchez, Luis
机构
[1] Inst Super Engn Lisboa, Area Cient Matemat, P-1950062 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, P-1649003 Lisbon, Portugal
关键词
D O I
10.1155/BVP/2006/32950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term - Delta u = f (u, integral(U) g(u)), u|(partial derivative U) = 0. We prove the existence of a positive radial solution when f grows linearly in u, using Krasnoselskii's fixed point theorem together with eigenvalue theory. In presence of upper and lower solutions, we consider monotone approximation to solutions.
引用
收藏
页数:18
相关论文
共 14 条
  • [1] [Anonymous], GRADUATE TEXTS MATH
  • [2] [Anonymous], 1970, COURS MATH SUPERIEUR
  • [3] Bebernes J. W., 1997, ADV DIFFERENTIAL EQU, V2, P927
  • [4] Chang N.-H., 2004, ADV MATH SCI APPL, V14, P1
  • [5] De Coster C., 2004, HDB DIFFERENTIAL EQU, P69
  • [6] Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
  • [7] Fijalkowski P., 2003, Topol. Methods Nonlinear Anal, V21, P293, DOI [10.12775/TMNA.2003.017, DOI 10.12775/TMNA.2003.017]
  • [8] Positivity results for a nonlocal elliptic equation
    Freitas, P
    Sweers, G
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 697 - 715
  • [9] Positive solutions of singular boundary value problems with indefinite weight
    Gaudenzi, M
    Habets, P
    Zanolin, F
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (04) : 607 - 619
  • [10] Gomes J.M., 2005, APPL ANAL, V84, P909