Preparation and Xylene-Sensing Properties of Co3O4 Nanofibers

被引:50
作者
Qu, Fengdong [1 ]
Feng, Caihui [1 ]
Li, Chao [1 ]
Li, Wei [1 ]
Ruan, Shengping [1 ]
Wen, Shanpeng [2 ]
Zhang, Haifeng [3 ]
机构
[1] State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Coll Elect Sci & Engn, Changchun 130012, Peoples R China
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
基金
中国国家自然科学基金;
关键词
CHEMICAL-VAPOR-DEPOSITION; GAS SENSORS; OPTICAL-PROPERTIES; THIN-FILMS; BENZENE; TOLUENE; COBALT; NANOPARTICLES; NANOWIRES; NANOBELTS;
D O I
10.1111/ijac.12160
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Co3O4 nanofibers were prepared by an electrospinning method and characterized by differential thermal and thermal gravimetric analyzer (DTA-TGA), X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FT-IR), and scanning electron microscopy (SEM). Xylene-sensing properties of the as-prepared nanofibers were also investigated in detail. The results showed that the morphology of the as-prepared fibers was largely influenced by the calcination temperature. The Co3O4 nanofibers calcined at 500 degrees C exhibited the highest response to xylene in a wide concentration range. Moreover, Co3O4 nanofibers calcined at 500 degrees C also exhibited good selectivity, fast response (15 s) and recovery (22 s) rate at a low operating temperatures of 255 degrees C. These properties make the fabricated nanofibers good candidates for xylene detection.
引用
收藏
页码:619 / 625
页数:7
相关论文
共 33 条
[1]  
Applegate BM, 1998, APPL ENVIRON MICROB, V64, P2730
[2]   Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition [J].
Bahlawane, N ;
Rivera, EF ;
Kohse-Höinghaus, K ;
Brechling, A ;
Kleineberg, U .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 53 (04) :245-255
[3]   A polymer-Metglas sensor used to detect volatile organic compounds [J].
Baimpos, Theodoros ;
Boutikos, Panagiotis ;
Nikolakis, Vladimiros ;
Kouzoudis, Dimitris .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 158 (02) :249-253
[4]   Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process [J].
Barakat, Nasser A. M. ;
Khil, Myung Seob ;
Sheikh, Faheem A. ;
Kim, Hak Yong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (32) :12225-12233
[5]   Effects of polymer media on electrospun mesoporous titania nanofibers [J].
Chen, Jiun-Yu ;
Chen, Hung-Cheng ;
Lin, Jiun-Nan ;
Kuo, Changshu .
MATERIALS CHEMISTRY AND PHYSICS, 2008, 107 (2-3) :480-487
[6]   Low power micro-gas sensors using mixed SnO2 nanoparticles and MWCNTs to detect NO2, NH3, and xylene gases for ubiquitous sensor network applications [J].
Choi, Kwang-Yong ;
Park, Joon-Shik ;
Park, Kwang-Bum ;
Kim, Hyun Jae ;
Park, Hyo-Derk ;
Kim, Seong-Dong .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 150 (01) :65-72
[7]   Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G ;
Pan, ZW ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1869-1871
[8]  
Condon J. B., 2006, SURFACE AREA POROSIT, V298
[9]   Highly efficient rapid ethanol sensing based on In2-xNixO3 nanofibers [J].
Feng, Caihui ;
Li, Wei ;
Li, Chao ;
Zhu, Linghui ;
Zhang, Haifeng ;
Zhang, Ying ;
Ruan, Shengping ;
Chen, Weiyou ;
Yu, Lianxiang .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 166 :83-88
[10]   Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? [J].
Franke, ME ;
Koplin, TJ ;
Simon, U .
SMALL, 2006, 2 (01) :36-50