Jackknife resampling parameter estimation method for weighted total least squares

被引:9
|
作者
Wang, Leyang [1 ]
Yu, Fengbin [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Shandong, Peoples R China
[2] East China Univ Technol, Fac Geomat, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Total least squares; resampling; Jackknife; Jackknife-d; parameter estimation;
D O I
10.1080/03610926.2019.1622725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To make the result of weighted total least squares (WTLS) parameter estimation more accurate, the Jackknife method is used to resample the observed data and make full use of Jackknife samples for multiple calculations. Combining Jackknife-1 and Jackknife-d with the weighted total least squares, the calculation methods of Jackknife-1-WTLS and Jackknife-d-WTLS are proposed, and the value of d is further studied. Meanwhile, the two methods are applied to the linear regression model, the planar coordinate transformation model and big rotation angle's 3 D coordinate transformation model. The results show that the proposed methods of Jackknife of weighted total least squares are more effective than least squares (LS), weighted total least squares and least squares resampling methods in improving the quality of parameter estimation, which verifies the validity and feasibility of the methods.
引用
收藏
页码:5810 / 5828
页数:19
相关论文
共 50 条
  • [1] Jackknife resample method for precision estimation of weighted total least squares
    Wang, Leyang
    Yu, Fengbin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (05) : 1272 - 1289
  • [2] Jackknife method for the location of gross errors in weighted total least squares
    Wang, Leyang
    Li, Zhiqiang
    Yu, Fengbin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1946 - 1966
  • [3] A weighted least-squares method for parameter estimation in structured models
    Galrinho, Miguel
    Rojas, Cristian
    Hjalmarsson, Hakan
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3322 - 3327
  • [4] MRF Parameter Estimation Based on Weighted Least Squares Fit Method
    Wu, Jinyan
    Yang, Bo
    Wang, Lin
    Ma, Kun
    Zhao, Xiuyang
    Zhou, Jin
    IEEE ICCSS 2016 - 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2016, : 164 - 169
  • [5] CONSTRAINED AND WEIGHTED LEAST SQUARES PROCEDURES FOR PARAMETER ESTIMATION
    VALLERSCHAMP, RE
    PERLMUTTER, DD
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1971, 10 (01): : 150 - +
  • [6] A Robust Weighted Total Least Squares Method
    Gong X.
    Gong, Xunqiang (xqgong1988@163.com), 2018, SinoMaps Press (47): : 1424
  • [7] On nonlinear weighted total least squares parameter estimation problem for the three-parameter Weibull density
    Markovic, Darija
    Jukic, Dragan
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (07) : 1839 - 1848
  • [8] Noisy FIR parameter estimation by combining of total least mean squares estimation and least mean squares estimation
    Lim, Jun-Seok
    IEICE ELECTRONICS EXPRESS, 2009, 6 (09): : 572 - 578
  • [9] APPLICATION OF THE WEIGHTED LEAST-SQUARES PARAMETER-ESTIMATION METHOD TO THE ROBOT CALIBRATION
    ZAK, G
    BENHABIB, B
    FENTON, RG
    SABAN, I
    JOURNAL OF MECHANICAL DESIGN, 1994, 116 (03) : 890 - 893
  • [10] Parameter estimation using weighted total least squares in the two-compartment exchange model
    Garpebring, Anders
    Lofstedt, Tommy
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (01) : 561 - 567