Abiotic stress responses in plants: roles of calmodulin-regulated proteins

被引:129
作者
Virdi, Amardeep S. [1 ]
Singh, Supreet [2 ]
Singh, Prabhjeet [2 ]
机构
[1] Guru Nanak Dev Univ, Dept Food Sci & Technol, Texture Anal Lab, Amritsar 143005, Punjab, India
[2] Guru Nanak Dev Univ, Dept Biotechnol, Plant Mol Biol Lab, Amritsar 143005, Punjab, India
关键词
abiotic stress; Ca2+; calmodulin; calmodulin-binding proteins; plants; SHOCK TRANSCRIPTION FACTOR; RECEPTOR-LIKE KINASE; HEAT-SHOCK; GLUTAMATE-DECARBOXYLASE; PLASMA-MEMBRANE; ARABIDOPSIS-THALIANA; SIGNAL-TRANSDUCTION; DNA-BINDING; SALT TOLERANCE; NITRIC-OXIDE;
D O I
10.3389/fpls.2015.00809
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
引用
收藏
页数:19
相关论文
共 207 条
[1]   Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus [J].
Akama, K ;
Akihiro, T ;
Kitagawa, M ;
Takaiwa, F .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2001, 1522 (03) :143-150
[2]   C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells [J].
Akama, Kazuhito ;
Takaiwa, Fumio .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (10) :2699-2707
[3]   Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress [J].
AL-Quraan, Nisreen A. ;
Locy, Robert D. ;
Singh, Narendra K. .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2010, 48 (08) :697-702
[4]   Death don't have no mercy and neither does calcium:: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity [J].
Ali, Rashid ;
Ma, Wei ;
Lemtiri-Chlieh, Fouad ;
Tsaltas, Dimitrios ;
Leng, Qiang ;
von Bodman, Susannne ;
Berkowitz, Gerald A. .
PLANT CELL, 2007, 19 (03) :1081-1095
[5]   Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress [J].
Alvarez Viveros, Maria Fernanda ;
Inostroza-Blancheteau, Claudio ;
Timmermann, Tania ;
Gonzalez, Maximo ;
Arce-Johnson, Patricio .
MOLECULAR BIOLOGY REPORTS, 2013, 40 (04) :3281-3290
[6]  
Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1
[7]   MOLECULAR AND BIOCHEMICAL-ANALYSIS OF CALMODULIN INTERACTIONS WITH THE CALMODULIN-BINDING DOMAIN OF PLANT GLUTAMATE-DECARBOXYLASE [J].
ARAZI, T ;
BAUM, G ;
SNEDDEN, WA ;
SHELP, BJ ;
FROMM, H .
PLANT PHYSIOLOGY, 1995, 108 (02) :551-561
[8]   A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants [J].
Arazi, T ;
Sunkar, R ;
Kaplan, B ;
Fromm, H .
PLANT JOURNAL, 1999, 20 (02) :171-182
[9]   Evolution of substrate specificities in the P-type ATPase superfamily [J].
Axelsen, KB ;
Palmgren, MG .
JOURNAL OF MOLECULAR EVOLUTION, 1998, 46 (01) :84-101
[10]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204