Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2

被引:22
|
作者
Keenan, Tiarnan D. L. [1 ]
Chen, Qingyu [2 ]
Peng, Yifan [2 ]
Domalpally, Amitha [3 ]
Agron, Elvira [1 ]
Hwang, Christopher K. [1 ]
Thavikulwat, Alisa T. [1 ]
Lee, Debora H. [1 ]
Li, Daniel [2 ]
Wong, Wai T. [1 ,4 ]
Lu, Zhiyong [2 ]
Chew, Emily Y. [1 ]
机构
[1] NEI, Div Epidemiol & Clin Applicat, NIH, Bethesda, MD 20892 USA
[2] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[3] Univ Wisconsin, Fundus Photograph Reading Ctr, Madison, WI USA
[4] NEI, Sect Neuron Glia Interact Retinal Dis, Lab Retinal Cell & Mol Biol, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
MACULAR DEGENERATION; SEVERITY SCALE; EYE DISEASE; ATROPHY; CLASSIFICATION; TRIAL;
D O I
10.1016/j.ophtha.2020.05.036
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To develop deep learning models for detecting reticular pseudodrusen (RPD) using fundus auto-fluorescence (FAF) images or, alternatively, color fundus photographs (CFP) in the context of age-related macular degeneration (AMD). Design: Application of deep learning models to the Age-Related Eye Disease Study 2 (AREDS2) dataset. Participants: FAF and CFP images (n = 11 535) from 2450 AREDS2 participants. Gold standard labels from reading center grading of the FAF images were transferred to the corresponding CFP images. Methods: A deep learning model was trained to detect RPD in eyes with intermediate to late AMD using FAF images (FAF model). Using label transfer from FAF to CFP images, a deep learning model was trained to detect RPD from CFP (CFP model). Performance was compared with 4 ophthalmologists using a random subset from the full test set. Main Outcome Measures: Area under the receiver operating characteristic curve (AUC), kappa value, accuracy, and F1 score. Results: The FAF model had an AUC of 0.939 (95% confidence interval [CI], 0.927-0.950), a k value of 0.718 (95% CI, 0.685-0.751), and accuracy of 0.899 (95% CI, 0.887-0.911). The CFP model showed equivalent values of 0.832 (95% CI, 0.812-0.851), 0.470 (95% CI, 0.426-0.511), and 0.809 (95% CI, 0.793-0.825), respectively. The FAF model demonstrated superior performance to 4 ophthalmologists, showing a higher k value of 0.789 (95% CI, 0.675-0.875) versus a range of 0.367 to 0.756 and higher accuracy of 0.937 (95% CI, 0.907-0.963) versus a range of 0.696 to 0.933. The CFP model demonstrated substantially superior performance to 4 ophthalmologists, showing a higher k value of 0.471 (95% CI, 0.330-0.606) versus a range of 0.105 to 0.180 and higher accuracy of 0.844 (95% CI, 0.798-0.886) versus a range of 0.717 to 0.814. Conclusions: Deep learning-enabled automated detection of RPD presence from FAF images achieved a high level of accuracy, equal or superior to that of ophthalmologists. Automated RPD detection using CFP achieved a lower accuracy that still surpassed that of ophthalmologists. Deep learning models can assist, and even augment, the detection of this clinically important AMD-associated lesion. Published by Elsevier on behalf of the American Academy of Ophthalmology
引用
收藏
页码:1674 / 1687
页数:14
相关论文
共 50 条
  • [21] Multi-task deep learning for glaucoma detection from color fundus images
    Pascal, Lucas
    Perdomo, Oscar J.
    Bost, Xavier
    Huet, Benoit
    Otalora, Sebastian
    Zuluaga, Maria A.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Multi-task deep learning for glaucoma detection from color fundus images
    Lucas Pascal
    Oscar J. Perdomo
    Xavier Bost
    Benoit Huet
    Sebastian Otálora
    Maria A. Zuluaga
    Scientific Reports, 12
  • [23] Predicting sex from retinal fundus photographs using automated deep learning
    Korot, Edward
    Pontikos, Nikolas
    Liu, Xiaoxuan
    Wagner, Siegfried K.
    Faes, Livia
    Huemer, Josef
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Khawaja, Anthony
    Keane, Pearse A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] Deep-learning estimation of choroidal thickness from color fundus photographs
    Tampo, Hironobu
    Takahashi, Hidenori
    Yanagi, Yasuo
    Sakamoto, Shin-ichi
    Inoda, Satoru
    Kawashima, Hidetoshi
    Inoue, Yuji
    Arai, Yusuke
    Takahashi, Ryota
    Soeta, Megumi
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [25] Predicting sex from retinal fundus photographs using automated deep learning
    Edward Korot
    Nikolas Pontikos
    Xiaoxuan Liu
    Siegfried K. Wagner
    Livia Faes
    Josef Huemer
    Konstantinos Balaskas
    Alastair K. Denniston
    Anthony Khawaja
    Pearse A. Keane
    Scientific Reports, 11
  • [26] Detecting Cataract from Color Fundus Photographs Using Explainable Deep Learning
    Elsawy, Amr
    Keenan, Tiarnan D. L.
    Chen, Qingyu
    Thavikulwat, Alisa T.
    Bhandari, Sanjeeb
    Chew, Emily Y.
    Lu, Zhiyong
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [27] AUTOMATED DETECTION OF VITRITIS USING ULTRAWIDE-FIELD FUNDUS PHOTOGRAPHS AND DEEP LEARNING
    Mhibik, Bayram
    Kouadio, Desire
    Jung, Camille
    Bchir, Chemsedine
    Toutee, Adelaide
    Maestri, Federico
    Gulic, Karmen
    Miere, Alexandra
    Falcione, Alessandro
    Touati, Myriam
    Monnet, Dominique
    Bodaghi, Bahram
    Touhami, Sara
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2024, 44 (06): : 1034 - 1044
  • [28] Evaluation of Cataracts using Fundus Reflex Photographs in the Age-Related Eye Disease Study 2 (AREDS2)
    Treichel, Erika
    Domalpally, Amitha
    Danis, Ronald
    Reed, Susan
    Narkar, Ashwini
    Clemons, Traci
    Chew, Emily
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [29] Deep learning algorithms for detection of diabetic macular edema requiring treatment from color fundus photographs
    Tan, Tien-En
    Ng, Yi Pin
    Calhoun, Claire
    Xu, Xinxing
    Yong, Liu
    Goh, Rick S. M.
    Tan, Gavin
    Sun, Jennifer K.
    Ting, Daniel S. W.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [30] An Efficient Deep Learning Network for Automatic Detection of Neovascularization in Color Fundus Images
    Huang, He
    Wang, Xiu
    Ma, He
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3688 - 3692