A difference operator of infinite order with Sobolev-type Charlier polynomials as eigenfunctions

被引:8
作者
Bavinck, H [1 ]
机构
[1] DELFT UNIV TECHNOL,FAC TECH MATH & INFORMAT,NL-2628 CD DELFT,NETHERLANDS
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1996年 / 7卷 / 03期
关键词
D O I
10.1016/0019-3577(96)83721-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polynomials are considered which are orthogonal with respect to the inner product [f,g] = (x=0)<SIGMA>(infinity) f(x)g(x) e(-a)a(x)\x! + lambda f(0)g(0) + mu Delta f(0), a > 0, lambda greater than or equal to 0, mu greater than or equal to 0. A representation for these polynomials is presented. It is shown that in the case lambda = 0 and mu > 0 these polynomials are eigenfunctions of a difference operator, which is shown to be of infinite order for all values of a > 0. The difference operator and the eigenvalues are linear perturbations of those in the Charlier case (lambda = 0, mu = 0). A formula for the eigenvalues and a representation for the coefficients in the differential operator are presented.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 9 条
[1]  
[Anonymous], 1978, MATH ITS APPL
[2]   A DIRECT APPROACH TO KOEKOEKS DIFFERENTIAL-EQUATION FOR GENERALIZED LAGUERRE-POLYNOMIALS [J].
BAVINCK, H .
ACTA MATHEMATICA HUNGARICA, 1995, 66 (03) :247-253
[3]   ON A DIFFERENCE EQUATION FOR GENERALIZATIONS OF CHARLIER POLYNOMIALS [J].
BAVINCK, H ;
KOEKOEK, R .
JOURNAL OF APPROXIMATION THEORY, 1995, 81 (02) :195-206
[4]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO AN INNER-PRODUCT INVOLVING DIFFERENCES [J].
BAVINCK, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (1-2) :17-27
[5]  
BAVINCK H, IN PRESS APPL ANAL
[6]   ON A DIFFERENTIAL-EQUATION FOR KOORNWINDERS GENERALIZED LAGUERRE-POLYNOMIALS [J].
KOEKOEK, J ;
KOEKOEK, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1045-1054
[7]  
KOEKOEK J, IN PRESS DIFFERENTIA
[8]   A GENERALIZATION OF LAGUERRE-POLYNOMIALS [J].
KOEKOEK, R ;
MEIJER, HG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) :768-782
[9]   ORTHOGONAL POLYNOMIALS WITH WEIGHT FUNCTION (1-X)-ALPHA-(1+X)-BETA-+M-DELTA-(X+1)+N-DELTA-(X-1) [J].
KOORNWINDER, TH .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (02) :205-214