Regularization of the continuation problem for elliptic equations

被引:26
作者
Kabanikhin, S. I. [1 ]
Gasimov, Y. S. [2 ]
Nurseitov, D. B. [3 ]
Shishlenin, M. A. [4 ]
Sholpanbaev, B. B. [5 ]
Kasenov, S. [3 ]
机构
[1] Novosibirsk State Univ, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
[2] Baku State Univ, Inst Appl Math, Baku, Azerbaijan
[3] KazNTU KI Satpaev, Natl Open Res Lab Informat & Space Technol, Alma Ata, Kazakhstan
[4] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia
[5] Abai Kazakh Natl Pedag Univ, Inst Master & PhD Programs, Alma Ata, Kazakhstan
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2013年 / 21卷 / 06期
基金
俄罗斯基础研究基金会;
关键词
Helmholtz equation; inverse problem; singular values; degree of ill-posedness; HELMHOLTZ-EQUATION; CAUCHY-PROBLEM; STABILITY;
D O I
10.1515/jip-2013-0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the continuation problem for the elliptic equation. The continuation problem is formulated in operator form A(q) = f . The singular values of the operator A are presented and analyzed for the continuation problem for the Helmholtz equation. Results of numerical experiments are presented.
引用
收藏
页码:871 / 884
页数:14
相关论文
共 19 条
[1]   The stability for the Cauchy problem for elliptic equations [J].
Alessandrini, Giovanni ;
Rondi, Luca ;
Rosset, Edi ;
Vessella, Sergio .
INVERSE PROBLEMS, 2009, 25 (12)
[2]  
Beilina L., 2012, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, DOI DOI 10.1007/978-1-4419-7805-9
[3]  
Engl H. W., 1996, REGULARIZATION INVER
[4]   Increased stability in the continuation of solutions to the Helmholtz equation [J].
Hrycak, T ;
Isakov, V .
INVERSE PROBLEMS, 2004, 20 (03) :697-712
[5]  
Isakov V, 2011, METHODS APPL ANAL, V18, P1
[7]   Impact of conditional stability: Convergence rates for general linear regularization methods [J].
Kabanikhin, S. I. ;
Schieck, M. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (03) :267-282
[8]  
Kabanikhin S. I., 2006, ITERATION METHODS SO
[9]  
Kabanikhin S. I., 2012, Inverse and Ill-Posed Problems: Theory and Applications
[10]  
KABANIKHIN SI, 1995, J INVERSE ILL-POSE P, V3, P21, DOI DOI 10.1515/JIIP.1995.3.1.21