Tuning Cross-Link Density in a Physical Hydrogel by Supramolecular Self-Sorting

被引:36
作者
Koenigs, Marcel M. E. [1 ,2 ]
Pal, Asish [1 ,2 ]
Mortazavi, Hamed [2 ,3 ]
Pawar, Gajanan M. [1 ,2 ]
Storm, Cornelis [2 ,3 ]
Sijbesma, Rint P. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
SCATTERING; POLYMERS; DYNAMICS; ACTIN;
D O I
10.1021/ma500446g
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cross-link density is an important parameter for the macroscopic mechanical properties of hydrogels. Increasing network density leads to an increase in the storage and loss moduli of the gel and can be accomplished by either increasing the concentration of cross-linkers, or by reducing the fraction of mechanically inactive cross-links. Mechanically inactive cross-links consist of loops in the network, which do not contribute to the mechanical properties. Suppression of loop formation is demonstrated in a system of semiflexible supramolecular rods of poly(ethylene glycol)-bis(urea) bolaamphiphiles. Use of a cross-linker which, due to self-sorting of its hydrophobic segments, preferentially connects different rods, increases the modulus of a hydrogel by a factor of 15 compared to a system without self-sorting. By using statistical-mechanical calculations, it is shown that this increase can be explained by the increased tendency of the cross-linkers to form bridges between the semiflexible rods and thus increasing the cross-link density in the supramolecular hydrogel.
引用
收藏
页码:2712 / 2717
页数:6
相关论文
共 28 条
[1]   Supramolecular polymeric hydrogels [J].
Appel, Eric A. ;
del Barrio, Jesus ;
Loh, Xian Jun ;
Scherman, Oren A. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (18) :6195-6214
[2]   Ultrahigh-Water-Content Supramolecular Hydrogels Exhibiting Multistimuli Responsiveness [J].
Appel, Eric A. ;
Loh, Xian Jun ;
Jones, Samuel T. ;
Biedermann, Frank ;
Dreiss, Cecile A. ;
Scherman, Oren A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (28) :11767-11773
[3]   Biopolymer-Based Hydrogels for Cartilage Tissue Engineering [J].
Balakrishnan, Biji ;
Banerjee, R. .
CHEMICAL REVIEWS, 2011, 111 (08) :4453-4474
[4]  
Ben Yuxing., 2011, Microgels for Oil Recovery, P407
[5]   Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers [J].
Broedersz, C. P. ;
Storm, C. ;
MacKintosh, F. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[6]  
Chebotareva N., 2005, CHEM COMMUN, P4967
[7]   Self-Assembling Multidomain Peptide Hydrogels: Designed Susceptibility to Enzymatic Cleavage Allows Enhanced Cell Migration and Spreading [J].
Galler, Kerstin M. ;
Aulisa, Lorenzo ;
Regan, Katherine R. ;
D'Souza, Rena N. ;
Hartgerink, Jeffrey D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (09) :3217-3223
[8]   Tunable Mechanics of Peptide Nanofiber Gels [J].
Greenfield, Megan A. ;
Hoffman, Jessica R. ;
de la Cruz, Monica Olvera ;
Stupp, Samuel I. .
LANGMUIR, 2010, 26 (05) :3641-3647
[9]  
JANMEY PA, 1994, J BIOL CHEM, V269, P32503
[10]   ANALYTICAL CALCULATION OF THE SCATTERING FUNCTION FOR POLYMERS OF ARBITRARY FLEXIBILITY USING THE DIRAC PROPAGATOR [J].
KHOLODENKO, AL .
MACROMOLECULES, 1993, 26 (16) :4179-4183