A unified presentation of some families of multivariable polynomials

被引:45
|
作者
Erkus, Esra
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
基金
加拿大自然科学与工程研究理事会;
关键词
multilinear and mixed multilateral generating functions; Chan-Chyan-Srivastava multivariable polynomials; explicit representation; Pochhammer symbol; Lagrange-Hermite polynomials; Lagrange polynomials; Srivastavas theorem; addition formulas; (differential) recurrence relations;
D O I
10.1080/10652460500444928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a systematic investigation of a unification (and generalization) of the Chan-Chyan-Srivastava multivariable polynomials and the multivariable extension of the familiar Lagrange-Hermite polynomials. We derive various classes of multilinear and mixed multilateral generating functions for these unified polynomials. We also discuss other miscellaneous properties of these general families of multivariable polynomials.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 28 条
  • [1] On a multivariable extension of the Humbert polynomials
    Aktas, Rabia
    Sahin, Recep
    Altin, Abdullah
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 662 - 666
  • [2] Miscellaneous properties of some multivariable polynomials
    Erkus-Duman, Esra
    Altin, Abdullah
    Aktas, Rabia
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 1875 - 1885
  • [3] Some new results for the multivariable Humbert polynomials
    Aktas, Rabia
    MATHEMATICA SLOVACA, 2014, 64 (06) : 1437 - 1450
  • [4] On a multivariable extension of the Lagrange-Hermite polynomials
    Altin, Abdullah
    Erkus, Esra
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (04) : 239 - 244
  • [5] Some Results for a Family of Multivariable Polynomials
    Ozmen, Nejla
    Erkus-Duman, Esra
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1124 - 1127
  • [6] Multiple integral representations for some families of hypergeometric and other polynomials
    Liu, Shuoh-Jung
    Chyan, Chuan-Jen
    Lu, Han-Chun
    Srivastava, H. M.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) : 1420 - 1427
  • [7] Some families of hypergeometric polynomials and associated multiple integral representations
    Lin, Shy-Der
    Liu, Shuoh-Jung
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (06) : 403 - 414
  • [8] CERTAIN FAMILIES OF MULTIVARIABLE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS
    Ozarslan, M. A.
    Srivastava, R.
    Kaanoglu, C.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 379 - 389
  • [9] Some families of generating functions for a certain class of three-variable polynomials
    Srivastava, H. M.
    Ozarslan, M. A.
    Kaanoglu, C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (12) : 885 - 896
  • [10] Some families of generating functions for a class of bivariate polynomials
    Ozergin, Emine
    Ozarslan, Mehmet A.
    Srivastava, H. M.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (7-8) : 1113 - 1120