Mathematical modelling of the degradation behaviour of biodegradable metals

被引:32
作者
Bajger, P. [1 ,7 ]
Ashbourn, J. M. A. [2 ]
Manhas, V. [3 ,4 ,5 ]
Guyot, Y. [3 ,4 ]
Lietaert, K. [6 ]
Geris, L. [3 ,4 ,5 ]
机构
[1] Univ Oxford, Christ Church, Oxford OX1 1DP, England
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[3] Univ Liege, Biomech Res Unit, Liege, Belgium
[4] Katholieke Univ Leuven, R&D Div Skeletal Tissue Engn, Prometheus, Leuven, Belgium
[5] Katholieke Univ Leuven, Biomech Sect, Leuven, Belgium
[6] Katholieke Univ Leuven, Dept Mat Engn, Leuven, Belgium
[7] Univ Warsaw, Coll Interfac Individual Studies Math & Nat Sci, Warsaw, Poland
基金
欧洲研究理事会;
关键词
Mathematical modelling; Biodegradable metals; Level-set method; Finite element method; MAGNESIUM IMPLANTS; CORROSION MODEL; IN-VITRO; ALLOYS; VIVO;
D O I
10.1007/s10237-016-0812-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A mathematical model for the biodegradation of magnesium is developed in this study to inspect the corrosion behaviour of biodegradable implants. The aim of this study was to provide a suitable framework for the assessment of the corrosion rate of magnesium which includes the process of formation/dissolution of the protective film. The model is intended to aid the design of implants with suitable geometries. The level-set method is used to follow the changing geometry of the implants during the corrosion process. A system of partial differential equations is formulated based on the physical and chemical processes that occur at the implant-medium boundary in order to simulate the effect of the formation of a protective film on the degradation rate. The experimental data from the literature on the corrosion of a high-purity magnesium sample immersed in simulated body fluid is used to calibrate the model. The model is then used to predict the degradation behaviour of a porous orthopaedic implant. The model successfully reproduces the precipitation of the corrosion products on the magnesium surface and the effect on the degradation rate. It can be used to simulate the implant degradation and the formation of the corrosion products on the surface of biodegradable magnesium implants with complex geometries.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 29 条
[1]   The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91 [J].
Abidin, Nor Ishida Zainal ;
Rolfe, Barbara ;
Owen, Helen ;
Malisano, Julian ;
Martin, Darren ;
Hofstetter, Joelle ;
Uggowitzer, Peter J. ;
Atrens, Andrej .
CORROSION SCIENCE, 2013, 75 :354-366
[2]   Stress corrosion cracking and hydrogen diffusion in magnesium [J].
Atrens, Andrej ;
Winzer, Nicholas ;
Song, Guangling ;
Dietzel, Wolfgang ;
Blawert, Carsten .
ADVANCED ENGINEERING MATERIALS, 2006, 8 (08) :749-751
[3]   On the corrosion of binary magnesium-rare earth alloys [J].
Birbilis, N. ;
Easton, M. A. ;
Sudholz, A. D. ;
Zhu, S. M. ;
Gibson, M. A. .
CORROSION SCIENCE, 2009, 51 (03) :683-689
[4]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[5]   Computation of the signed distance function to a discrete contour on adapted triangulation [J].
Dapogny, Charles ;
Frey, Pascal .
CALCOLO, 2012, 49 (03) :193-219
[6]   Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents [J].
Gastaldi, D. ;
Sassi, V. ;
Petrini, L. ;
Vedani, M. ;
Trasatti, S. ;
Migliavacca, F. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2011, 4 (03) :352-365
[7]  
Grathwohl P., 1998, Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics, P43
[8]   A physical corrosion model for bioabsorbable metal stents [J].
Grogan, J. A. ;
Leen, S. B. ;
McHugh, P. E. .
ACTA BIOMATERIALIA, 2014, 10 (05) :2313-2322
[9]   A corrosion model for bioabsorbable metallic stents [J].
Grogan, J. A. ;
O'Brien, B. J. ;
Leen, S. B. ;
McHugh, P. E. .
ACTA BIOMATERIALIA, 2011, 7 (09) :3523-3533
[10]   A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study [J].
Guyot, Y. ;
Papantoniou, I. ;
Chai, Y. C. ;
Van Bael, S. ;
Schrooten, J. ;
Geris, L. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2014, 13 (06) :1361-1371