Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

被引:31
作者
Tiberkevich, Vasil S. [1 ]
Khymyn, Roman S. [1 ,2 ]
Tang, Hong X. [3 ]
Slavin, Andrei N. [1 ]
机构
[1] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[2] Natl Acad Sci Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine
[3] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
PHASE NOISE; MODEL; LOCKING;
D O I
10.1038/srep03873
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For auto-oscillators of different nature (e. g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine.
引用
收藏
页数:7
相关论文
共 33 条
[1]   CONDITIONS FOR SYNCHRONIZATION IN JOSEPHSON-JUNCTION ARRAYS [J].
CHERNIKOV, AA ;
SCHMIDT, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3415-3419
[2]   Synchronization properties of network motifs: Influence of coupling delay and symmetry [J].
D'Huys, O. ;
Vicente, R. ;
Erneux, T. ;
Danckaert, J. ;
Fischer, I. .
CHAOS, 2008, 18 (03)
[3]   Phase noise in oscillators: A unifying theory and numerical methods for characterization [J].
Demir, A ;
Mehrotra, A ;
Roychowdhury, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (05) :655-674
[4]   A COMBINED NEURONAL AND MECHANICAL MODEL OF FISH SWIMMING [J].
EKEBERG, O .
BIOLOGICAL CYBERNETICS, 1993, 69 (5-6) :363-374
[5]  
Epstein IR., 1998, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
[6]   Synchronization and rhythmic processes in physiology [J].
Glass, L .
NATURE, 2001, 410 (6825) :277-284
[7]   Synchronization of spin-transfer oscillators driven by stimulated microwave currents [J].
Grollier, J ;
Cros, V ;
Fert, A .
PHYSICAL REVIEW B, 2006, 73 (06)
[8]   A general theory of phase noise in electrical oscillators [J].
Hajimiri, A ;
Lee, TH .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (02) :179-194
[9]   Synchronization of laser oscillators, associative memory, and optical neurocomputing [J].
Hoppensteadt, FC ;
Izhikevich, EM .
PHYSICAL REVIEW E, 2000, 62 (03) :4010-4013
[10]  
Hu ZH Wang H.Y., 2002, DYNAMICS CONTROLLED