Determining the band alignment of TbAs: GaAs and TbAs: In0.53Ga0.47As

被引:8
作者
Bomberger, Cory C. [1 ]
Vanderhoef, Laura R. [2 ]
Rahman, Abdur [3 ]
Shah, Deesha [4 ]
Chase, D. Bruce [1 ]
Taylor, Antoinette J. [4 ]
Azad, Abul K. [4 ]
Doty, Matthew F. [1 ,2 ]
Zide, Joshua M. O. [1 ]
机构
[1] Univ Delaware, Dept Mat Sci & Engn, Delaware, OH 19716 USA
[2] Univ Delaware, Dept Phys & Astron, Delaware, OH 19716 USA
[3] Edinboro Univ Penn, Phys & Technol Dept, Edinboro, PA 16444 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; NANOPARTICLES;
D O I
10.1063/1.4930816
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose and systematically justify a band structure for TbAs nanoparticles in GaAs and In0.53Ga0.47As host matrices. Fluence-dependent optical-pump terahertz-probe measurements suggest the TbAs nanoparticles have a band gap and provide information on the carrier dynamics, which are determined by the band alignment. Spectrophotometry measurements provide the energy of optical transitions in the nanocomposite systems and reveal a large blue shift in the absorption energy when the host matrix is changed from In0.53Ga0.47As to GaAs. Finally, Hall data provides the approximate Fermi level in each system. From this data, we deduce that the TbAs: GaAs system forms a type I (straddling) heterojunction and the TbAs: In0.53Ga0.47As system forms a type II (staggered) heterojunction. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 19 条
[11]   Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices [J].
O'Hara, John F. ;
Zide, J. M. O. ;
Gossard, A. C. ;
Taylor, A. J. ;
Averitt, R. D. .
APPLIED PHYSICS LETTERS, 2006, 88 (25)
[12]  
PANKOVE JI, 1971, OPTICAL PROCESSES SE, P37
[13]   Electronic structure of rare earth arsenide gallium arsenide superlattices [J].
Said, M ;
Bertoni, CM ;
Fasolino, A ;
Ossicini, S .
SOLID STATE COMMUNICATIONS, 1996, 100 (07) :477-480
[14]   Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation [J].
Salas, R. ;
Guchhait, S. ;
Sifferman, S. D. ;
McNicholas, K. M. ;
Dasika, V. D. ;
Krivoy, E. M. ;
Jung, D. ;
Lee, M. L. ;
Bank, S. R. .
APPLIED PHYSICS LETTERS, 2015, 106 (08)
[15]   Near-infrared absorption and semimetal-semiconductor transition in 2 nm ErAs nanoparticles embedded in GaAs and AlAs [J].
Scarpulla, Michael A. ;
Zide, Joshua M. O. ;
LeBeau, James M. ;
Van de Walle, Chris G. ;
Gossard, Arthur C. ;
Delaney, Kris T. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[16]   Charge carrier relaxation processes in TbAs nanoinclusions in GaAs measured by optical-pump THz-probe transient absorption spectroscopy [J].
Vanderhoef, Laura R. ;
Azad, Abul K. ;
Bomberger, Cory C. ;
Chowdhury, Dibakar Roy ;
Chase, D. Bruce ;
Taylor, Antoinette J. ;
Zide, Joshua M. O. ;
Doty, Matthew F. .
PHYSICAL REVIEW B, 2014, 89 (04)
[17]   High efficiency semimetal/semiconductor nanocomposite thermoelectric materials [J].
Zide, J. M. O. ;
Bahk, J-H. ;
Singh, R. ;
Zebarjadi, M. ;
Zeng, G. ;
Lu, H. ;
Feser, J. P. ;
Xu, D. ;
Singer, S. L. ;
Bian, Z. X. ;
Majumdar, A. ;
Bowers, J. E. ;
Shakouri, A. ;
Gossard, A. C. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
[18]   Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles [J].
Zide, JM ;
Klenov, DO ;
Stemmer, S ;
Gossard, AC ;
Zeng, G ;
Bowers, JE ;
Vashaee, D ;
Shakouri, A .
APPLIED PHYSICS LETTERS, 2005, 87 (11)
[19]   Increased efficiency in multijunction solar cells through the incorporation of semimetallic ErAs nanoparticles into the tunnel junction [J].
Zide, JMO ;
Kleiman-Shwarsctein, A ;
Strandwitz, NC ;
Zimmerman, JD ;
Steenblock-Smith, T ;
Gossard, AC ;
Forman, A ;
Ivanovskaya, A ;
Stucky, GD .
APPLIED PHYSICS LETTERS, 2006, 88 (16)