Determining the band alignment of TbAs: GaAs and TbAs: In0.53Ga0.47As

被引:8
作者
Bomberger, Cory C. [1 ]
Vanderhoef, Laura R. [2 ]
Rahman, Abdur [3 ]
Shah, Deesha [4 ]
Chase, D. Bruce [1 ]
Taylor, Antoinette J. [4 ]
Azad, Abul K. [4 ]
Doty, Matthew F. [1 ,2 ]
Zide, Joshua M. O. [1 ]
机构
[1] Univ Delaware, Dept Mat Sci & Engn, Delaware, OH 19716 USA
[2] Univ Delaware, Dept Phys & Astron, Delaware, OH 19716 USA
[3] Edinboro Univ Penn, Phys & Technol Dept, Edinboro, PA 16444 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; NANOPARTICLES;
D O I
10.1063/1.4930816
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose and systematically justify a band structure for TbAs nanoparticles in GaAs and In0.53Ga0.47As host matrices. Fluence-dependent optical-pump terahertz-probe measurements suggest the TbAs nanoparticles have a band gap and provide information on the carrier dynamics, which are determined by the band alignment. Spectrophotometry measurements provide the energy of optical transitions in the nanocomposite systems and reveal a large blue shift in the absorption energy when the host matrix is changed from In0.53Ga0.47As to GaAs. Finally, Hall data provides the approximate Fermi level in each system. From this data, we deduce that the TbAs: GaAs system forms a type I (straddling) heterojunction and the TbAs: In0.53Ga0.47As system forms a type II (staggered) heterojunction. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Recombination lifetime of In0.53Ga0.47As as a function of doping density [J].
Ahrenkiel, RK ;
Ellingson, R ;
Johnston, S ;
Wanlass, M .
APPLIED PHYSICS LETTERS, 1998, 72 (26) :3470-3472
[2]  
Ashcroft N., 1976, SOLID STATE PHYS, P572
[3]   Growth and characterization of TbAs:GaAs nanocomposites [J].
Cassels, Laura E. ;
Buehl, Trevor E. ;
Burke, Peter G. ;
Palmstrom, Chris J. ;
Gossard, Art C. ;
Pernot, Gilles ;
Shakouri, Ali ;
Haughn, Chelsea R. ;
Doty, Matthew F. ;
Zide, Joshua M. O. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03)
[4]   Thermoelectric properties of epitaxial TbAs:InGaAs nanocomposites [J].
Clinger, Laura E. ;
Pernot, Gilles ;
Buehl, Trevor E. ;
Burke, Peter G. ;
Gossard, Arthur C. ;
Palmstrom, Christopher J. ;
Shakouri, Ali ;
Zide, Joshua M. O. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
[5]   Theoretical study of Schottky-barrier formation at epitaxial rare-earth-metal/semiconductor interfaces [J].
Delaney, Kris T. ;
Spaldin, Nicola A. ;
Van de Walle, Chris G. .
PHYSICAL REVIEW B, 2010, 81 (16)
[6]   Observation of Self-Assembled Core-Shell Structures in Epitaxially Embedded TbErAs Nanoparticles [J].
Dongmo, Pernell ;
Hartshorne, Matthew ;
Cristiani, Thomas ;
Jablonski, Michael L. ;
Bomberger, Cory ;
Isheim, Dieter ;
Seidman, David N. ;
Taheri, Mitra L. ;
Zide, Joshua .
SMALL, 2014, 10 (23) :4920-4925
[7]   Electronic structure and conduction in a metal-semiconductor digital composite:: ErAs:InGaAs [J].
Driscoll, DC ;
Hanson, M ;
Kadow, C ;
Gossard, AC .
APPLIED PHYSICS LETTERS, 2001, 78 (12) :1703-1705
[8]   Local Density of States and Interface Effects in Semimetallic ErAs Nanoparticles Embedded in GaAs [J].
Kawasaki, Jason K. ;
Timm, Rainer ;
Delaney, Kris T. ;
Lundgren, Edvin ;
Mikkelsen, Anders ;
Palmstrom, Chris J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[9]   Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors [J].
Kim, W ;
Zide, J ;
Gossard, A ;
Klenov, D ;
Stemmer, S ;
Shakouri, A ;
Majumdar, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[10]   Enhanced conductivity of tunnel junctions employing semimetallic nanoparticles through variation in growth temperature and deposition [J].
Nair, Hari P. ;
Crook, Adam M. ;
Bank, Seth R. .
APPLIED PHYSICS LETTERS, 2010, 96 (22)