Comparison theory of Lorentzian distance with applications to spacelike hypersurfaces

被引:0
作者
Alias, Luis J. [1 ]
Hurtado, Ana [2 ]
Palmer, Vicente [3 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Granada, Departamento Geometria Topol, E-18071 Granada, Spain
[3] Univ Jaune, Dept Mat, E-12071 Castellon de La Plana, Spain
来源
PHYSICS AND MATHEMATICS OF GRAVITATION | 2009年 / 1122卷
关键词
Lorenzian distance function; Hessian and Laplacian comparison results; spacelike hypersurface; mean curvature; Omori-Yau maximum principle; RIEMANNIAN MANIFOLDS;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we summarize some comparison results for the Lorentzian distance function in spacetimes, with applications to the study of the geometric analysis of the Lorentzian distance on spacelike hypersurfaces. In particular, we will consider spacelike hypersufaces whose image under the immersion is bounded in the ambient spacetime and derive sharp estimates for the mean curvature of such hypersurfaces under appropriate hypotheses on the curvature of the ambient spacetime. The results in this paper are part of our recent work [1], where complete details and further related results may be found.
引用
收藏
页码:91 / +
页数:2
相关论文
共 8 条
[1]   On the curvatures of bounded complete spacelike hypersurfaces in the Lorentz-Minkowski space [J].
Aledo, JA ;
Alías, LJ .
MANUSCRIPTA MATHEMATICA, 2000, 101 (03) :401-413
[2]  
ALFAS LJ, T AM MATH S IN PRESS
[3]  
[Anonymous], MEMOIRS AM MATH SOC
[4]  
Beem J K., 1996, Global Lorentzian Geometry
[5]   On level sets of Lorentzian distance function [J].
Erkekoglu, F ;
García-Río, E ;
Kupeli, DN .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (09) :1597-1615
[6]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+
[7]  
ONeill B., 1983, PURE APPL MATH, V103
[8]   HARMONIC-FUNCTIONS ON COMPLETE RIEMANNIAN MANIFOLDS [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (02) :201-228