Dynamical degrees of automorphisms on abelian varieties

被引:2
作者
Nguyen-Bac Dang [1 ]
Herrig, Thorsten [2 ]
机构
[1] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
[2] Humboldt Univ, Inst Math, Rudower Chaussee 25, D-12489 Berlin, Germany
关键词
Dynamical degrees; Abelian varieties; Automorphisms; Salem numbers; Quaternion algebras; SALEM-NUMBERS; FIXED-POINTS; K3; SURFACES; ENDOMORPHISMS; ENTROPY; CURRENTS; MAPS;
D O I
10.1016/j.aim.2021.108082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any given Salem number, we construct an automorphism on a simple abelian variety whose first dynamical degree is the square of the Salem number. Our construction works for both simple abelian varieties with totally indefinite quaternion multiplication and for simple abelian varieties of the second kind. We then give a complete classification of the dynamical degree sequences for abelian varieties of dimension at most four and obtain an ergodic result for sequences of pullbacks of forms. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] Lawson homology for abelian varieties
    Hu, Wenchuan
    [J]. FORUM MATHEMATICUM, 2015, 27 (02) : 1249 - 1276
  • [42] A NOTE ON SUPERSINGULAR ABELIAN VARIETIES
    Yu, Chia-Fu
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2020, 15 (01): : 9 - 32
  • [43] Simplicity of twists of abelian varieties
    Bartel, Alex
    [J]. ACTA ARITHMETICA, 2015, 171 (01) : 15 - 22
  • [44] The Cone Conjecture for Abelian Varieties
    Prendergast-Smith, Artie
    [J]. JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2012, 19 (02): : 243 - 261
  • [45] Abelian varieties and group actions
    Rodriguez, Rubi E.
    [J]. RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES, 2014, 629 : 299 - +
  • [46] Polarization estimates for abelian varieties
    Masser, David
    Wuestholz, Gisbert
    [J]. ALGEBRA & NUMBER THEORY, 2014, 8 (05) : 1045 - 1070
  • [47] Almost isomorphic abelian varieties
    Zarhin Y.G.
    [J]. European Journal of Mathematics, 2017, 3 (1) : 22 - 33
  • [48] Abelian varieties isogenous to no Jacobian
    Masser, David
    Zannier, Umberto
    [J]. ANNALS OF MATHEMATICS, 2020, 191 (02) : 635 - 674
  • [49] The diagonal property for abelian varieties
    Debarre, Olivier
    [J]. CURVES AND ABELIAN VARIETIES, 2008, 465 : 45 - 50
  • [50] Perfect points of abelian varieties
    Ambrosi, Emiliano
    [J]. COMPOSITIO MATHEMATICA, 2023, 159 (11) : 2261 - 2278