Dynamical degrees of automorphisms on abelian varieties

被引:2
|
作者
Nguyen-Bac Dang [1 ]
Herrig, Thorsten [2 ]
机构
[1] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
[2] Humboldt Univ, Inst Math, Rudower Chaussee 25, D-12489 Berlin, Germany
关键词
Dynamical degrees; Abelian varieties; Automorphisms; Salem numbers; Quaternion algebras; SALEM-NUMBERS; FIXED-POINTS; K3; SURFACES; ENDOMORPHISMS; ENTROPY; CURRENTS; MAPS;
D O I
10.1016/j.aim.2021.108082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any given Salem number, we construct an automorphism on a simple abelian variety whose first dynamical degree is the square of the Salem number. Our construction works for both simple abelian varieties with totally indefinite quaternion multiplication and for simple abelian varieties of the second kind. We then give a complete classification of the dynamical degree sequences for abelian varieties of dimension at most four and obtain an ergodic result for sequences of pullbacks of forms. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:43
相关论文
共 50 条
  • [21] Computing automorphisms of abelian number fields
    Acciaro, V
    Klüners, J
    MATHEMATICS OF COMPUTATION, 1999, 68 (227) : 1179 - 1186
  • [22] Automorphisms of the Doubles of Purely Non-Abelian Finite Groups
    Marc Keilberg
    Algebras and Representation Theory, 2015, 18 : 1267 - 1297
  • [23] Diagram automorphisms of quiver varieties
    Henderson, Anthony
    Licata, Anthony
    ADVANCES IN MATHEMATICS, 2014, 267 : 225 - 276
  • [24] Automorphisms of the Doubles of Purely Non-abelian Finite Groups
    Keilberg, Marc
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (05) : 1267 - 1297
  • [25] Automorphisms of Nonnormal Toric Varieties
    Boldyrev, I. A.
    Gaifullin, S. A.
    MATHEMATICAL NOTES, 2021, 110 (5-6) : 872 - 886
  • [26] Periods of abelian varieties
    Milne, JS
    COMPOSITIO MATHEMATICA, 2004, 140 (05) : 1149 - 1175
  • [27] On syzygies of Abelian varieties
    Rubei, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2569 - 2579
  • [28] Reduction of abelian varieties
    Silverberg, A
    Zarhin, YG
    ARITHMETIC AND GEOMETRY OF ALGEBRAIC CYCLES, 2000, 548 : 495 - 513
  • [29] On Cycles of Pairing-Friendly Abelian Varieties
    Santos, Maria Corte-Real
    Costello, Craig
    Naehrig, Michael
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT IX, 2024, 14928 : 221 - 253
  • [30] SMOOTH QUOTIENTS OF PRINCIPALLY POLARIZED ABELIAN VARIETIES
    Auffarth, Robert
    Lucchini Arteche, Giancarlo
    MOSCOW MATHEMATICAL JOURNAL, 2022, 22 (02) : 225 - 237