Collapse of an instanton

被引:20
作者
Bizon, P [1 ]
Ovchinnikov, YN
Sigal, IM
机构
[1] Jagiellonian Univ, Krakow, Poland
[2] LD Landau Theoret Phys Inst, Moscow, Russia
[3] Univ Toronto, Toronto, ON, Canada
[4] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
D O I
10.1088/0951-7715/17/4/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a two-parameter family of collapsing solutions to the 4 + 1 Yang-Mills equations and derive the dynamical law of the collapse. Our arguments indicate that this family of solutions is stable. The latter fact is also supported by numerical simulations.
引用
收藏
页码:1179 / 1191
页数:13
相关论文
共 15 条
[1]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[2]   On blowup of Yang-Mills fields [J].
Bizon, P ;
Tabor, Z .
PHYSICAL REVIEW D, 2001, 64 (12)
[3]  
Bizon P, 2002, ACTA PHYS POL B, V33, P1893
[4]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[5]  
CALFISH RE, 1993, SINGULARITIES FLUIDS, V404
[6]  
Cazenave T, 1998, ANN I H POINCARE-PHY, V68, P315
[7]  
Dumitrascu O., 1982, Stud. Cerc. Mat, V34, P329
[8]  
EARDLEY DM, 1982, COMMUN MATH PHYS, V83, P171, DOI 10.1007/BF01976040
[9]   FINITE-ENERGY SOLUTIONS OF THE YANG-MILLS EQUATIONS IN R(3+1) [J].
KLAINERMAN, S ;
MACHEDON, M .
ANNALS OF MATHEMATICS, 1995, 142 (01) :39-119
[10]   Fast and slow blowup in the S2 σ-model and the (4+1)-dimensional Yang-Mills model [J].
Linhart, JM ;
Sadun, LA .
NONLINEARITY, 2002, 15 (02) :219-238