Pathways to hot carrier solar cells

被引:6
|
作者
Ferry, David K. [1 ]
Whiteside, Vincent R. [2 ]
Sellers, Ian R. [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ USA
[2] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
hot carriers; economics; intervalley transfer; energy selective contacts; hot phonons; HETEROJUNCTION BIPOLAR-TRANSISTORS; OPEN-CIRCUIT VOLTAGE; P-N-JUNCTION; INTERVALLEY SCATTERING; QUANTUM-WELLS; PICOSECOND RELAXATION; ENERGY-CONVERSION; IMPACT IONIZATION; BULK GAAS; EFFICIENCY;
D O I
10.1117/1.JPE.12.022204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hot carrier solar cells (HCSCs) were first proposed many decades ago. Over the intervening years, there has been a continuing quest to create these cells that hold promise to shatter the Shockley-Queisser efficiency limit on single-junction solar cells. While there have been many positive and suggestive results in recent years, there remains no true operational HCSC. There are perhaps many reasons for this state. Here, many of the requirements for achieving such an HCSC will be discussed and some approaches will be modernized in terms of their science. Valley photovoltaics, in which carriers are transferred to higher-lying valleys of the conduction band will be described and the recent progress is discussed. (C) 2022 Society of Photo-Optical Instrumentation Engineers
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Hot carrier impact on photovoltage formation in solar cells
    Asmontas, S.
    Gradauskas, J.
    Suziedelis, A.
    Silenas, A.
    Sirmulis, E.
    Svedas, V.
    Vaicikauskas, V.
    Zalys, O.
    APPLIED PHYSICS LETTERS, 2018, 113 (07)
  • [22] Challenges, myths, and opportunities in hot carrier solar cells
    Ferry, D. K.
    Goodnick, S. M.
    Whiteside, V. R.
    Sellers, I. R.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
  • [23] Energy selective contacts for hot carrier solar cells
    Shrestha, Santosh K.
    Aliberti, Pasquale
    Conibeer, Gavin J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (09) : 1546 - 1550
  • [24] Hot carrier solar cells: Principles, materials and design
    Koenig, D.
    Casalenuovo, K.
    Takeda, Y.
    Conibeer, G.
    Guillemoles, J. F.
    Patterson, R.
    Huang, L. M.
    Green, M. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (10): : 2862 - 2866
  • [25] Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells
    Takeda, Yasuhiko
    Ichiki, Akihisa
    Kusano, Yuya
    Sugimoto, Noriaki
    Motohiro, Tomoyoshi
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (12)
  • [26] Hot-carrier multi-junction solar cells: A synergistic approach
    Giteau, Maxime
    Almosni, Samy
    Guillemoles, Jean-Francois
    APPLIED PHYSICS LETTERS, 2022, 120 (21)
  • [27] Progress on hot carrier cells
    Conibeer, Gavin
    Ekins-Daukes, Nicholas
    Guillemoles, Jean-Francois
    Konig, Dirk
    Cho, Eun-Chel
    Jiang, Chu-Wei
    Shrestha, Santosh
    Green, Martin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 713 - 719
  • [28] Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells
    Zhang, Yu
    Yam, ChiYung
    Schatz, George C.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (10): : 1852 - 1858
  • [29] Research Progress of Perovskite Materials in Hot Carrier Solar Cells
    Chen Shuhan
    Liu Xiaochun
    Wang Lina
    Gong Jue
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (13)
  • [30] The Role of Thermalization in the Cooling Dynamics of Hot Carrier Solar Cells
    Faber, Tim
    Filipovic, Lado
    Koster, L. Jan Anton
    SOLAR RRL, 2023, 7 (13)