Boundary conditions and conserved densities for potential Zabolotskaya-Khokhlov equation

被引:5
作者
Rosenhaus, V. [1 ]
机构
[1] Calif State Univ Los Angeles, Dept Math & Stat, Chico, CA 95929 USA
关键词
D O I
10.2991/jnmp.2006.13.2.8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study local conservation laws and corresponding boundary conditions for the potential Zabolotskaya-Khokhlov equation in(3+1)-dimensional case. We analyze an infinite Lie point symmetry group of the equation,and generate a finite number of conserved quantities corresponding to infinite symmetries through appropriate boundary conditions.
引用
收藏
页码:255 / 270
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 1986, INTRO GEOMETRY NONLI
[2]   EQUATIONS INVARIANT UNDER THE SYMMETRY GROUP OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
DAVID, D ;
LEVI, D ;
WINTERNITZ, P .
PHYSICS LETTERS A, 1988, 129 (03) :161-164
[3]  
Ibragimov NH, 1984, Transformation groups applied to mathematical physics, V3, DOI DOI 10.1007/978-94-009-5243-0
[4]  
IBRAGIMOV NH, 1972, LIE GROUPS SOME PROB
[5]   GROUP-STRUCTURE AND THE BASIS OF CONSERVATION-LAWS [J].
KHAMITOVA, RS .
THEORETICAL AND MATHEMATICAL PHYSICS, 1982, 52 (02) :777-781
[6]  
KORSUNSKI SV, 1991, MAT FIZ NELIN MEKH, V16, P81
[7]  
KUCHARCZYK P, 1967, TEORIE GRUP LIEGO ZA
[8]   Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-α, a chemical inhibitor of p53 [J].
Lin, YF ;
Waldman, BC ;
Waldman, AS .
DNA REPAIR, 2003, 2 (01) :1-11
[9]  
NOETHER R, 1918, NACHR KNIG GESSELL 1, P235
[10]  
Olver PJ, 1986, APPL LIE GROUPS DIFF