Excitons in Single-Walled Carbon Nanotubes and Their Dynamics

被引:42
作者
Amori, Amanda R. [1 ]
Hou, Zhentao [1 ]
Krauss, Todd D. [1 ,2 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69 | 2018年 / 69卷
关键词
single-walled carbon nanotubes; excitons; photoluminescence; ultrafast dynamics; multiple-exciton generation; photon antibunching; DEPENDENT FLUORESCENCE EFFICIENCIES; ABSORPTION CROSS-SECTIONS; SOLAR-CELLS; ELECTRONIC-STRUCTURE; TRANSITION ENERGIES; CARRIER DYNAMICS; WATER-OXIDATION; QUANTUM DOTS; PHOTOLUMINESCENCE; SPECTROSCOPY;
D O I
10.1146/annurev-physchem-050317-014241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics inSWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.
引用
收藏
页码:81 / 99
页数:19
相关论文
共 50 条
[21]   Evidence for Long-lived, Optically Generated Quenchers of Excitons in Single-Walled Carbon Nanotubes [J].
Siitonen, Anni J. ;
Bachilo, Sergei M. ;
Tsyboulski, Dmitri A. ;
Weisman, R. Bruce .
NANO LETTERS, 2012, 12 (01) :33-38
[22]   Magneto spectroscopy of single-walled carbon nanotubes [J].
Portugall, O. ;
Krstic, V. ;
Rikken, G. L. J. A. ;
Kono, J. ;
Shaver, J. ;
Zaric, S. ;
Moore, V. C. ;
Hauge, R. H. ;
Smalley, R. E. ;
Miyauchi, Y. ;
Maruyama, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9) :1189-1197
[23]   Fluorimetric characterization of single-walled carbon nanotubes [J].
Weisman, R. Bruce .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (03) :1015-1023
[24]   Semiconducting Single-Walled Carbon Nanotubes or Very Rigid Conjugated Polymers: A Comparison [J].
Zaumseil, Jana .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (02)
[25]   Alleviating defects in perovskites using single-walled carbon nanotubes [J].
Choi, Jin-Myung ;
Han, Jiye ;
Rane, Tushar ;
Kim, Soyeon ;
Kim, Ick Soo ;
Jeon, Il .
JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04)
[26]   Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects [J].
Li, Min-Ken ;
Riaz, Adnan ;
Wederhake, Martina ;
Fink, Karin ;
Saha, Avishek ;
Dehm, Simone ;
He, Xiaowei ;
Schoeppler, Friedrich ;
Kappes, Manfred M. ;
Htoon, Han ;
Popov, Valentin N. ;
Doom, Stephen K. ;
Hertel, Tobias ;
Hennrich, Frank ;
Krupke, Ralph .
ACS NANO, 2022, 8 (11742-11754) :11742-11754
[27]   Bright Fluorescence from Individual Single-Walled Carbon Nanotubes [J].
Lee, Andrea J. ;
Wang, Xiaoyong ;
Carlson, Lisa J. ;
Smyder, Julie A. ;
Loesch, Bradford ;
Tu, Xiaomin ;
Zheng, Ming ;
Krauss, Todd D. .
NANO LETTERS, 2011, 11 (04) :1636-1640
[28]   New Strategies for the Enrichment of Metallic Single-Walled Carbon Nanotubes [J].
Voggu, Rakesh ;
Ghosh, Sandeep ;
Govindaraj, A. ;
Rao, C. N. R. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (06) :4102-4108
[29]   Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting [J].
Blackburn, Jeffrey L. .
ACS ENERGY LETTERS, 2017, 2 (07) :1598-1613
[30]   Towards femtosecond electronics based on single-walled carbon nanotubes [J].
Karnetzky, C. ;
Holleitner, A. W. .
ULTRAFAST PHENOMENA AND NANOPHOTONICS XXII, 2018, 10530