Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

被引:11
作者
Chen, Hansheng [1 ,2 ,3 ]
Yun, Fan [1 ,2 ,3 ]
Qu, Jiangtao [1 ,2 ,3 ]
Li, Yingfei [4 ]
Cheng, Zhenxiang [4 ]
Fang, Ruhao [1 ,2 ,3 ]
Ye, Zhixiao [5 ]
Ringer, Simon P. [2 ,6 ]
Zheng, Rongkun [1 ,2 ,3 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[2] Univ Sydney, Univ Sydney Nano Inst, Sydney, NSW 2006, Australia
[3] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[4] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[5] Hengdian Grp DMEGC Magnet Co Ltd, Jinhua 322118, Zhejiang, Peoples R China
[6] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
来源
PHYSICAL REVIEW MATERIALS | 2018年 / 2卷 / 05期
基金
澳大利亚研究理事会;
关键词
NUCLEATION FIELDS; MICROSTRUCTURE; PHASE; DEPENDENCE; ENHANCEMENT; MECHANISM;
D O I
10.1103/PhysRevMaterials.2.054404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Atwood D.A., 2013, The Rare Earth Elements: Fundamentals and Applications
  • [2] Grain size quantification by optical microscopy, electron backscatter diffraction, and magnetic force microscopy
    Chen, Hansheng
    Yao, Yin
    Warner, Jacob A.
    Qu, Jiangtao
    Yun, Fan
    Ye, Zhixiao
    Ringer, Simon P.
    Zheng, Rongkun
    [J]. MICRON, 2017, 101 : 41 - 47
  • [3] EFFECT OF NITROGEN-CONTENT ON MAGNETIC-PROPERTIES OF SM2FE17NX AND SMFE5NY ALLOYS
    CHIN, TS
    LIN, CH
    BAI, HJ
    HUANG, YH
    CHENG, KS
    HUANG, SH
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (05) : 2587 - 2589
  • [4] Coey J M. D., 2010, Magnetism and Magnetic Materials, P464, DOI DOI 10.1017/CBO9780511845000
  • [5] Donahue M.J., 1999, OOMMF USERS GUIDE VE
  • [6] Gault B., 2012, ATOM PROBE MICROSCOP, V160
  • [7] Determination of the exchange constant of Tb0.3Dy0.7Fe2 by broadband ferromagnetic resonance spectroscopy
    Gopman, D. B.
    Lau, J. W.
    Mohanchandra, K. P.
    Wetzlar, K.
    Carman, G. P.
    [J]. PHYSICAL REVIEW B, 2016, 93 (06)
  • [8] Greinacher E., 1981, Industrial Applications of Rare Earth Elements
  • [9] Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient
    Gutfleisch, Oliver
    Willard, Matthew A.
    Bruck, Ekkes
    Chen, Christina H.
    Sankar, S. G.
    Liu, J. Ping
    [J]. ADVANCED MATERIALS, 2011, 23 (07) : 821 - 842
  • [10] The role of local anisotropy profiles at grain boundaries on the coercivity of Nd2Fe14B magnets
    Hrkac, Gino
    Woodcock, Thomas G.
    Freeman, Colin L.
    Goncharov, Alexander
    Dean, Julian
    Schrefl, Thomas
    Gutfleisch, Oliver
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (23)