A mixed virtual element method for the Brinkman problem

被引:69
作者
Caceres, Ernesto [1 ,3 ]
Gatica, Gabriel N. [1 ]
Sequeira, Filander A. [2 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, CI2MA, Casilla 160-C, Concepcion, Chile
[2] Univ Nacl, Escuela Matemat, Campus Omar Dengo, Heredia, Costa Rica
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
Brinkman model; mixed virtual element method; a priori error analysis; postprocessing techniques; high-order approximations;
D O I
10.1142/S0218202517500142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze a mixed virtual element method (mixed-VEM) for the two-dimensional Brinkman model of porous media flow with non-homogeneous Dirichlet boundary conditions. More precisely, we employ a dual-mixed formulation in which the only unknown is given by the pseudostress, whereas the velocity and pressure are computed via postprocessing formulae. We first recall the corresponding variational formulation, and then summarize the main mixed-VEM ingredients that are required for our discrete analysis. In particular, in order to define a calculable discrete bilinear form, whose continuous version involves deviatoric tensors, we propose two well-known alternatives for the local projector onto a suitable polynomial subspace, which allows the explicit integration of these terms. Next, we show that the global discrete bilinear form satisfies the hypotheses required by the Lax-Milgram lemma. In this way, we conclude the well-posedness of our mixed-VEM scheme and derive the associated a priori error estimates for the virtual solution as well as for the fully computable projection of it. Furthermore, we also introduce a second element-by-element postprocessing formula for the pseudostress, which yields an optimally convergent approximation of this unknown with respect to the broken H(div)-norm. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are presented.
引用
收藏
页码:707 / 743
页数:37
相关论文
共 32 条
  • [1] Equivalent projectors for virtual element methods
    Ahmad, B.
    Alsaedi, A.
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 376 - 391
  • [2] A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem
    Anaya, Veronica
    Mora, David
    Oyarzua, Ricardo
    Ruiz-Baier, Ricardo
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 781 - 817
  • [3] An augmented velocity-vorticity-pressure formulation for the Brinkman equations
    Anaya, Veronica
    Gatica, Gabriel N.
    Mora, David
    Ruiz-Baier, Ricardo
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 79 (03) : 109 - 137
  • [4] STABILIZED MIXED APPROXIMATION OF AXISYMMETRIC BRINKMAN FLOWS
    Anaya, Veronica
    Mora, David
    Reales, Carlos
    Ruiz-Baier, Ricardo
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03): : 855 - 874
  • [5] A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES
    Antonietti, P. F.
    da Veiga, L. Beirao
    Mora, D.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 386 - 404
  • [6] Arizaga Caceres E. R., 2015, THESIS
  • [7] Beirao da Veiga L., 2016, ARXIV160601048V1
  • [8] Boffi D., 2013, SPRINGER SERIES COMP, V44
  • [9] BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS
    Brezzi, F.
    Falk, Richard S.
    Marini, L. Donatella
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04): : 1227 - 1240
  • [10] Brezzi F., 2012, 22PV1200 IMATICNR, P1