Adjusted approximation spaces for the treatment of transverse shear locking in isogeometric Reissner-Mindlin shell analysis

被引:20
作者
Kikis, G. [1 ]
Dornisch, W. [2 ]
Klinkel, S. [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Struct Anal & Dynam, Mies van der Rohe Str 1, D-52074 Aachen, Germany
[2] Brandenburg Tech Univ Cottbus Senftenberg, Fachgebiet Stat & Dynam, Konrad Wachsmann Allee 2, D-03046 Cottbus, Germany
关键词
Isogeometric analysis; Reissner-Mindlin shells; Transverse shear locking; Adjusted approximation spaces; FINITE-ELEMENT-ANALYSIS; TIMOSHENKO BEAM PROBLEM; COLLOCATION METHODS; MEMBRANE LOCKING; STRAIN METHOD; NURBS; FORMULATION; DEFORMATION; (B)OVER-BAR; PROJECTION;
D O I
10.1016/j.cma.2019.05.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transverse shear locking is an issue that occurs in Reissner-Mindlin plate and shell elements. It leads to an artificial stiffening of the system and to oscillations in the stress resultants for thin structures. The thinner the structure is, the more pronounced are the effects. Since transverse shear locking is caused by a mismatch in the approximation spaces of the displacements and the rotations, a field-consistent approach is proposed for an isogeometric degenerated Reissner-Mindlin shell formulation. The efficiency and accuracy of the method is investigated for benchmark plate and shell problems. A comparison to element formulations with locking alleviation methods from the literature is provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:850 / 870
页数:21
相关论文
共 62 条
[1]   Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells [J].
Adam, C. ;
Bouabdallah, S. ;
Zarroug, M. ;
Maitournam, H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 :106-137
[2]   Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams [J].
Adam, C. ;
Bouabdallah, S. ;
Zarroug, M. ;
Maitournam, H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 279 :1-28
[3]  
[Anonymous], 2009, Isogeometric analysis
[4]   An isogeometric method for linear nearly-incompressible elasticity with local stress projection [J].
Antolin, Pablo ;
Bressan, Andrea ;
Buffa, Annalisa ;
Sangalli, Giancarlo .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 :694-719
[5]   Locking-free isogeometric collocation methods for spatial Timoshenko rods [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Kiendl, J. ;
Lovadina, C. ;
Reali, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 263 :113-126
[6]   A LINEAR THICK CURVED BEAM ELEMENT [J].
BABU, CR ;
PRATHAP, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (07) :1313-1328
[7]   MECHANICS OF FIELD-CONSISTENCY IN FINITE-ELEMENT ANALYSIS - A PENALTY-FUNCTION APPROACH [J].
BABU, CR ;
SUBRAMANIAN, G ;
PRATHAP, G .
COMPUTERS & STRUCTURES, 1987, 25 (02) :161-173
[8]   An evaluation of the MITC shell elements [J].
Bathe, KJ ;
Iosilevich, A ;
Chapelle, D .
COMPUTERS & STRUCTURES, 2000, 75 (01) :1-30
[9]   STRESS PROJECTION FOR MEMBRANE AND SHEAR LOCKING IN SHELL FINITE-ELEMENTS [J].
BELYTSCHKO, T ;
STOLARSKI, H ;
LIU, WK ;
CARPENTER, N ;
ONG, JSJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 51 (1-3) :221-258
[10]   Blended isogeometric shells [J].
Benson, D. J. ;
Hartmann, S. ;
Bazilevs, Y. ;
Hsu, M. -C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 255 :133-146