Fine properties of sets of finite perimeter in doubling metric measure spaces

被引:124
作者
Ambrosio, L [1 ]
机构
[1] Scuola Normale Super Pisa, I-56100 Pisa, Italy
来源
SET-VALUED ANALYSIS | 2002年 / 10卷 / 2-3期
关键词
BV functions; doubling property; Hausdorff measure; essential boundary;
D O I
10.1023/A:1016548402502
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the properties of the perimeter measure in the quite general setting of metric measure spaces. In particular, defining the essential boundary partial derivative(*)E of E as the set of points where neither the density of E nor the density of X\E is 0, we show that the perimeter measure is concentrated on partial derivative(*)E and is representable by an Hausdorff-type measure.
引用
收藏
页码:111 / 128
页数:18
相关论文
共 41 条
[1]   Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces [J].
Ambrosio, L .
ADVANCES IN MATHEMATICS, 2001, 159 (01) :51-67
[2]  
Ambrosio L., 2000, SELECTED TOPICS ANAL
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[4]  
Baldi A, 2001, HOUSTON J MATH, V27, P683
[5]  
Bellettini G, 1999, J CONVEX ANAL, V6, P349
[6]   SOBOLEV INEQUALITIES ON HOMOGENEOUS SPACES [J].
BIROLI, M ;
MOSCO, U .
POTENTIAL ANALYSIS, 1995, 4 (04) :311-324
[7]  
BIROLI M, 1995, ATTI ACCAD NAZ LINCE, V6, P37
[8]  
Caccioppoli R., 1952, REND ACCAD NAZ LINCE, V12, P3
[9]  
CACCIOPPOLI R, 1963, OPERE, V1, P358
[10]  
Caccioppoli R., 1952, REND ACCAD NAZ LINCE, V12, P137