On explicit exact solutions of variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation

被引:6
作者
Gupta, Rajesh Kumar [1 ,2 ]
Kaur, Jaskiran [2 ]
机构
[1] Cent Univ Haryana, Sch Phys & Math Sci, Dept Math, Mahendergarh 123031, Haryana, India
[2] Cent Univ Punjab, Dept Math & Stat, Sch Basic & Appl Sci, Bathinda 151001, Punjab, India
关键词
CONSERVATION-LAWS; SYMMETRY ANALYSIS;
D O I
10.1140/epjp/i2019-12670-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.We investigate the variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation for admissible forms of the variable coefficients under the condition of invariance, and derive certain explicit exact solutions for the reduced ordinary differential equations of fractional order.
引用
收藏
页数:9
相关论文
共 37 条
[31]   Bilinear forms, modulational instability and dark solitons for a fifth-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous optical fiber [J].
Huang, Qian-Min ;
Gao, Yi-Tian ;
Hu, Lei .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 352 :270-278
[32]   Lie Group Classification of Generalized Variable Coefficient Korteweg-de Vries Equation with Dual Power-Law Nonlinearities with Linear Damping and Dispersion in Quantum Field Theory [J].
Adeyemo, Oke Davies ;
Khalique, Chaudry Masood .
SYMMETRY-BASEL, 2022, 14 (01)
[33]   The time-fractional generalized Z-K equation: Analysis of Lie group, similarity reduction, conservation laws, and explicit solutions [J].
AL-Denari, Rasha B. ;
Ahmed, Engy A. ;
Tharwat, Mohammed M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) :4475-4493
[34]   Painleve integrability and multiple soliton solutions for the extensions of the (modified) Korteweg-de Vries-type equations with second-order time-derivative [J].
Wazwaz, Abdul-Majid ;
Alhejaili, Weaam ;
Matoog, R. T. ;
El-Tantawy, S. A. .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 103 :393-401
[35]   Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions [J].
Lu, Changna ;
Fu, Chen ;
Yang, Hongwei .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 327 :104-116
[36]   The (2+1)-dimensional generalized time-fractional Zakharov Kuznetsov Benjamin Bona Mahony equation: its classical and nonclassical symmetries, exact solutions, and conservation laws [J].
Alizadeh, Farzaneh ;
Hincal, Evren ;
Hosseini, Kamyar ;
Hashemi, Mir Sajjad ;
Das, Anusmita .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (12)
[37]   The (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional generalized time-fractional Zakharov Kuznetsov Benjamin Bona Mahony equation: its classical and nonclassical symmetries, exact solutions, and conservation laws [J].
Farzaneh Alizadeh ;
Evren Hincal ;
Kamyar Hosseini ;
Mir Sajjad Hashemi ;
Anusmita Das .
Optical and Quantum Electronics, 2023, 55 (12)