On explicit exact solutions of variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation

被引:6
作者
Gupta, Rajesh Kumar [1 ,2 ]
Kaur, Jaskiran [2 ]
机构
[1] Cent Univ Haryana, Sch Phys & Math Sci, Dept Math, Mahendergarh 123031, Haryana, India
[2] Cent Univ Punjab, Dept Math & Stat, Sch Basic & Appl Sci, Bathinda 151001, Punjab, India
关键词
CONSERVATION-LAWS; SYMMETRY ANALYSIS;
D O I
10.1140/epjp/i2019-12670-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.We investigate the variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation for admissible forms of the variable coefficients under the condition of invariance, and derive certain explicit exact solutions for the reduced ordinary differential equations of fractional order.
引用
收藏
页数:9
相关论文
共 37 条
[21]   Some new exact wave solutions and conservation laws of potential Korteweg-de Vries equation [J].
Triki, Houria ;
Ak, Turgut ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Mirzazadeh, Mohammad ;
Kara, Abdul Hamid ;
Aydemir, Tugba .
NONLINEAR DYNAMICS, 2017, 89 (01) :501-508
[22]   Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation [J].
Das, Amiya ;
Mandal, Uttam Kumar .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
[23]   Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber [J].
Zhao, Chen ;
Gao, Yi-Tian ;
Lan, Zhong-Zhou ;
Yang, Jin-Wei ;
Su, Chuan-Qi .
MODERN PHYSICS LETTERS B, 2016, 30 (24)
[24]   Nonautonomous soliton solutions for a nonintegrable Korteweg-de Vries equation with variable coefficients by the variational approach [J].
Su, Chuan-Qi ;
Wang, Yong-Yan ;
Qin, Nan ;
Li, Jian-Guang ;
Zhang, Guo-Dong .
APPLIED MATHEMATICS LETTERS, 2019, 90 :104-109
[25]   Conservation laws for a coupled variable-coefficient modified Korteweg-de Vries system in a two-layer fluid model [J].
Bozhkov, Y. ;
Dimas, S. ;
Ibragimov, N. H. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) :1127-1135
[26]   Lie symmetry scheme to the generalized Korteweg-de Vries equation with Riemann-Liouville fractional derivative [J].
Liu, Jian-Gen ;
Guo, Xiu-Rong ;
Gui, Lin-Lin .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
[27]   Similarity reduction, group analysis, conservation laws, and explicit solutions for the time-fractional deformed KdV equation of fifth order [J].
Al-Denari, Rasha B. ;
Ahmed, Engy. A. ;
Seadawy, Aly R. ;
Moawad, S. M. ;
EL-Kalaawy, O. H. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (11)
[28]   Symmetry Reduction, Exact Solutions, and Conservation Laws of (2+1)-Dimensional Burgers Korteweg-de Vries Equation [J].
DONG ZhongZhou LIU XiQiang and BAI ChengLin School of Mathematical Science Liaocheng University Liaocheng China School of Physical Science and Information Engineering Liaocheng University Liaocheng China .
CommunicationsinTheoreticalPhysics, 2006, 46 (07) :15-20
[29]   Symmetry reduction, exact solutions, and conservation laws of (2+1)-dimensional Burgers Korteweg-de Vries equation [J].
Dong Zhong-Zhou ;
Liu Xi-Qiang ;
Bai Cheng-Lin .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (01) :15-20
[30]   On explicit exact solutions and conservation laws for time fractional variable - coefficient coupled Burger's equations [J].
Kaur, Jaskiran ;
Gupta, Rajesh Kumar ;
Kumar, Sachin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83