On explicit exact solutions of variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation

被引:6
|
作者
Gupta, Rajesh Kumar [1 ,2 ]
Kaur, Jaskiran [2 ]
机构
[1] Cent Univ Haryana, Sch Phys & Math Sci, Dept Math, Mahendergarh 123031, Haryana, India
[2] Cent Univ Punjab, Dept Math & Stat, Sch Basic & Appl Sci, Bathinda 151001, Punjab, India
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2019年 / 134卷 / 06期
关键词
CONSERVATION-LAWS; SYMMETRY ANALYSIS;
D O I
10.1140/epjp/i2019-12670-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.We investigate the variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation for admissible forms of the variable coefficients under the condition of invariance, and derive certain explicit exact solutions for the reduced ordinary differential equations of fractional order.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids
    Tian, Shou-Fu
    Zhang, Hong-Qing
    STUDIES IN APPLIED MATHEMATICS, 2014, 132 (03) : 212 - 246
  • [22] Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    NONLINEAR DYNAMICS, 2012, 67 (02) : 1023 - 1030
  • [23] Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations
    Cooper, F
    Hyman, JM
    Khare, A
    PHYSICAL REVIEW E, 2001, 64 (02): : 13
  • [24] APPLICATIONS OF MAPLE SOFTWARE TO DERIVE EXACT SOLUTIONS OF GENERALIZED FIFTH-ORDER KORTEWEG-DE VRIES EQUATION WITH TIME-DEPENDENT COEFFICIENTS
    Goyal, Nisha
    Wazwaz, Abdul-Majid
    Gupta, R. K.
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (01) : 99 - 111
  • [25] Integrability and exact solutions of deformed fifth-order Korteweg–de Vries equation
    S Suresh Kumar
    R Sahadevan
    Pramana, 2020, 94
  • [26] Multisoliton and general Wronskian solutions of a variable-coefficient Korteweg-de Vries equation
    Zhao, Hai-qiong
    Zhou, Tong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 19074 - 19082
  • [27] Multiple soliton solutions and other solutions of a variable-coefficient Korteweg-de Vries equation
    Mabenga, C.
    Muatjetjeja, B.
    Motsumi, T. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [28] Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation
    Pal, Ritu
    Kaur, Harleen
    Raju, Thokala Soloman
    Kumar, C. N.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 617 - 622
  • [29] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [30] Non-linear Dynamics and Exact Solutions for the Variable-Coefficient Modified Korteweg-de Vries Equation
    Liu, Jiangen
    Zhang, Yufeng
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02): : 143 - 149