High Performance and Self-rectifying Hafnia-based Ferroelectric Tunnel Junction for Neuromorphic Computing and TCAM Applications

被引:30
作者
Goh, Youngin [1 ]
Hwang, Junghyeon [1 ]
Kim, Minki [1 ]
Jung, Minhyun [1 ]
Lim, Sehee [2 ]
Jung, Seong-Ook [2 ]
Jeon, Sanghun [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul, South Korea
来源
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2021年
关键词
D O I
10.1109/IEDM19574.2021.9720610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We experimentally demonstrated high performance and self-rectifying hafnia based ferroelectric tunnel junction (FTJ) using stress engineering, diffusion barrier technology, and imprint field effect for neuromorphic computing and logic in memory application. In TiN/HZO/TaN/W stacked FTJ, W bottom electrode which has low thermal expansion coefficient enables to stabilize the ferroelectric o-phase even at ultra-thin HZO film, and TaN layer suppresses the diffusion of W atoms into ferroelectric HZO layer, resulting in reduction of leakage current and giant TER value of 100. In addition, highly asymmetric switching characteristics with rectifying ratio of 1000 is achieved using imprint field effect induced by positive fixed charges nearby bottom interface. The proposed device provides a viable solution for high performance, low power and high-density synaptic devices and TCAM applications.
引用
收藏
页数:4
相关论文
共 8 条
  • [1] Equivalent-accuracy accelerated neural-network training using analogue memory
    Ambrogio, Stefano
    Narayanan, Pritish
    Tsai, Hsinyu
    Shelby, Robert M.
    Boybat, Irem
    di Nolfo, Carmelo
    Sidler, Severin
    Giordano, Massimo
    Bodini, Martina
    Farinha, Nathan C. P.
    Killeen, Benjamin
    Cheng, Christina
    Jaoudi, Yassine
    Burr, Geoffrey W.
    [J]. NATURE, 2018, 558 (7708) : 60 - +
  • [2] Low-power linear computation using nonlinear ferroelectric tunnel junction memristors
    Berdan, Radu
    Marukame, Takao
    Ota, Kensuke
    Yamaguchi, Marina
    Saitoh, Masumi
    Fujii, Shosuke
    Deguchi, Jun
    Nishi, Yoshifumi
    [J]. NATURE ELECTRONICS, 2020, 3 (05) : 259 - 266
  • [3] Cheema S. S., 2020, COND MAT MTRL SCI, P06182
  • [4] Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization
    Goh, Youngin
    Hwang, Junghyeon
    Lee, Yongsun
    Kim, Minki
    Jeon, Sanghun
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (24)
  • [5] Analogue signal and image processing with large memristor crossbars
    Li, Can
    Hu, Miao
    Li, Yunning
    Jiang, Hao
    Ge, Ning
    Montgomery, Eric
    Zhang, Jiaming
    Song, Wenhao
    Davila, Noraica
    Graves, Catherine E.
    Li, Zhiyong
    Strachan, John Paul
    Lin, Peng
    Wang, Zhongrui
    Barnell, Mark
    Wu, Qing
    Williams, R. Stanley
    Yang, J. Joshua
    Xia, Qiangfei
    [J]. NATURE ELECTRONICS, 2018, 1 (01): : 52 - 59
  • [6] Direct Correlation of Ferroelectric Properties and Memory Characteristics in Ferroelectric Tunnel Junctions
    Max, Benjamin
    Hoffmann, Michael
    Slesazeck, Stefan
    Mikolajick, Thomas
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) : 1175 - 1181
  • [7] A 10T-4MTJ Nonvolatile Ternary CAM Cell for Reliable Search Operation and a Compact Area
    Song, Byungkyu
    Na, Taehui
    Kim, Jung Pill
    Kang, Seung H.
    Jung, Seong-Ook
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (06) : 700 - 704
  • [8] A general memristor-based partial differential equation solver
    Zidan, Mohammed A.
    Jeong, YeonJoo
    Lee, Jihang
    Chen, Bing
    Huang, Shuo
    Kushner, Mark J.
    Lu, Wei D.
    [J]. NATURE ELECTRONICS, 2018, 1 (07): : 411 - 420