Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity

被引:371
作者
Ghalambaz, Mohammad [1 ]
Chamkha, Ali J. [2 ,3 ]
Wen, Dongsheng [1 ,4 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing, Peoples R China
[2] Prince Mohammad Bin Fahd Univ, Mech Engn Dept, Prince Mohammad Endowment Nanosci & Technol, Al Khobar 31952, Saudi Arabia
[3] Amer Univ Ras Al Khaimah, RAK Res & Innovat Ctr, POB 10021, Ras Al Khaymah, U Arab Emirates
[4] Univ Leeds, Sch Chem & Proc Engn, Leeds, W Yorkshire, England
关键词
Nano Encapsulated Phase Change Materials (NEPCMs); Free convection heat transfer; Heat transfer enhancement; THERMAL-ENERGY STORAGE; TRANSFER ENHANCEMENT; NANOFLUID MODEL; N-OCTADECANE; NANOPARTICLES; SINK; VISUALIZATION; SUSPENSIONS; FABRICATION; ENCLOSURE;
D O I
10.1016/j.ijheatmasstransfer.2019.04.037
中图分类号
O414.1 [热力学];
学科分类号
摘要
Free convective flow and heat transfer of a suspension of Nano Encapsulated Phase Change Materials (NEPCMs) in an enclosure is studied. NEPCM particles are core-shell structured with Phase Change Material (PCM) as the core. The enclosure is a square cavity with top and bottom insulated walls and differentially-heated isothermal vertical walls. The NEPCM particles circulate under natural convection inside the cavity. The PCM cores undergo phase change from solid to liquid and absorb some of the surrounding's heat in the form of latent heat in the hot region, and release the absorbed heat in the cold region by solidification. The governing equations representing the conservation of mass, flow, and heat of NEPCM suspension are introduced in the form of partial differential equations. The governing equations are transformed into non-dimensional form and solved by the finite element method. A grid check and validation test are performed to ensure the accuracy of the results. The outcomes show that the fusion temperature of NEPCM particles is the key factor affecting the heat transfer enhancement of NEPCMs in the natural convection flow. The enhancement of heat transfer is highly dependent on the non-dimensional fusion temperature, theta(f), and very good performance can be achieved in the range of 1/4 < theta(f) < 3/4. Comparing to the base fluid, a relative enhancement of about 10% can be achieved by using NEPCMs at a non-dimensional fusion temperature of 1/4. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:738 / 749
页数:12
相关论文
共 49 条
[1]   Forced convection heat transfer to phase change material slurries in circular ducts [J].
Alisetti, EL ;
Roy, SK .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2000, 14 (01) :115-118
[2]   Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder [J].
Alsabery, A., I ;
Sheremet, M. A. ;
Chamkha, A. J. ;
Hashim, I .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2019, 150 :637-655
[3]  
Alsabery A. l., 2018, INT J NUMER METHOD H, DOI [10.1108/HFF-07-2018-0386,HFF-07-2018-0386, DOI 10.1108/HFF-07-2018-0386,HFF-07-2018-0386]
[4]   Effects of two-phase nanofluid model on natural convection in a square cavity in the presence of an adiabatic inner block and magnetic field [J].
Alsabery, Ammar I. ;
Tayebi, Tahar ;
Chamkha, Ali J. ;
Hashim, Ishak .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (07) :1613-1647
[5]   Heat flow visualization for natural convection in rhombic enclosures due to isothermal and non-isothermal heating at the bottom wall [J].
Anandalakshmi, R. ;
Basak, Tanmay .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (04) :1325-1342
[6]   Natural convection melting of nano-enhanced phase change material in a cavity with finned copper profile [J].
Bondareva, Nadezhda ;
Sheremet, Mikhail .
XI INTERNATIONAL CONFERENCE ON COMPUTATIONAL HEAT, MASS AND MOMENTUM TRANSFER (ICCHMT 2018), 2018, 240
[7]   Convective transport in nanofluids [J].
Buongiorno, J .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03) :240-250
[8]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[9]   A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks [J].
Chai, Lei ;
Shaukat, Rabia ;
Wang, Liang ;
Wang, Hua Sheng .
APPLIED THERMAL ENGINEERING, 2018, 135 :334-349
[10]   Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity [J].
Chamkha, A. J. ;
Doostanidezfuli, A. ;
Izadpanahi, E. ;
Ghalambaz, M. .
ADVANCED POWDER TECHNOLOGY, 2017, 28 (02) :385-397