A Thermal Diode Based on Nanoscale Thermal Radiation

被引:192
作者
Fiorino, Anthony [1 ]
Thompson, Dakotah [1 ]
Zhu, Linxiao [1 ]
Mittapally, Rohith [1 ]
Biehs, Svend-Age [2 ]
Bezencenet, Odile [3 ]
El-Bondry, Nadia [3 ]
Bansropun, Shailendra [3 ]
Ben-Abdallah, Philippe [4 ]
Meyhofer, Edgar [1 ]
Reddy, Pramod [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[3] Thales Res & Technol France, 1 Ave Augustin Fresnel, F-91767 Palaiseau, France
[4] Univ Paris Sud 11, Inst Opt, CNRS, Lab Charles Fabry,UMR 8501, 2 Ave Augustin Fresnel, F-91127 Palaiseau, France
基金
美国国家科学基金会;
关键词
thermal rectification; thermal diode; near-field radiative heat transfer; vanadium dioxide; nanoscale heat transfer; HEAT-TRANSFER; NEAR-FIELD; OPTICAL-PROPERTIES; VANADIUM DIOXIDE; THIN-FILMS; VO2; TRANSITION; SILICON;
D O I
10.1021/acsnano.8b01645
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO2 surfaces. Specifically, we show that the metal-insulator transition of VO2 makes it possible to achieve large differences in the heat flow between Si and VO2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at 140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.
引用
收藏
页码:5774 / 5779
页数:6
相关论文
共 36 条
[1]   INFRARED OPTICAL PROPERTIES OF VANADIUM DIOXIDE ABOVE AND BELOW TRANSITION TEMPERATURE [J].
BARKER, AS ;
VERLEUR, HW ;
GUGGENHEIM, HJ .
PHYSICAL REVIEW LETTERS, 1966, 17 (26) :1286-+
[2]   Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature [J].
Basu, S. ;
Lee, B. J. ;
Zhang, Z. M. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (02) :1-8
[3]   Review of near-field thermal radiation and its application to energy conversion [J].
Basu, S. ;
Zhang, Z. M. ;
Fu, C. J. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2009, 33 (13) :1203-1232
[4]   Near-field radiative transfer based thermal rectification using doped silicon [J].
Basu, Soumyadipta ;
Francoeur, Mathieu .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[5]   Near-Field Thermal Transistor [J].
Ben-Abdallah, Philippe ;
Biehs, Svend-Age .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[6]   Phase-change radiative thermal diode [J].
Ben-Abdallah, Philippe ;
Biehs, Svend-Age .
APPLIED PHYSICS LETTERS, 2013, 103 (19)
[7]  
Chi S.W., 1976, HEAT PIPE THEORY PRA
[8]   Near field thermal memory based on radiative phase bistability of VO2 [J].
Dyakov, S. A. ;
Dai, J. ;
Yan, M. ;
Qiu, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (30)
[9]   Nanoscale radiation heat transfer for silicon at different doping levels [J].
Fu, CJ ;
Zhang, ZM .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (9-10) :1703-1718
[10]   A platform to parallelize planar surfaces and control their spatial separation with nanometer resolution [J].
Ganjeh, Y. ;
Song, B. ;
Pagadala, K. ;
Kim, K. ;
Sadat, S. ;
Jeong, W. ;
Kurabayashi, K. ;
Meyhofer, E. ;
Reddy, P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)