High-Performance Anode Materials with Superior Structure of Fe3O4/FeS/rGO Composite for Lithium Ion Batteries

被引:17
作者
Gao, Ruirui [1 ]
Wang, Suqin [1 ,2 ]
Xu, Zhaoxiu [1 ]
Li, Hongbo [1 ]
Chen, Shuiliang [1 ]
Hou, Haoqing [1 ,2 ]
机构
[1] Jiangxi Normal Univ, Dept Chem & Chem Engn, Nanchang 330029, Jiangxi, Peoples R China
[2] Jiangxi Normal Univ, Jiangxi Nanofiber Engn Ctr, Nanchang 330029, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrothermal method; reduced graphene oxide; conductivity network; electrochemical performance; lithium-ion battery; GRAPHENE OXIDE COMPOSITES; ELECTROCHEMICAL PERFORMANCE; FE3O4; STORAGE; NANOCOMPOSITES; ELECTRODE; NANOPARTICLES/GRAPHENE; PSEUDOCAPACITANCE; NANOCRYSTALS; NANOSHEETS;
D O I
10.1142/S1793292020501283
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we developed a simple one-step hydrothermal method to successfully prepare Fe3O4/FeS-reduced graphene oxide (Fe3O4/FeS/rGO) composite directly, which is a novel Lithium-ion batteries (LIBs) anode material. The characterization of Fe3O4/FeS/rGO composite demonstrates that octahedral Fe3O4/FeS particles are uniformly deposited on the rGO, leading to a strong synergy between them. The excellent structural design can make Fe3O4/FeS/rGO composite to have higher reversible capacity (744.7 mAh/g at 0.1 C after 50 cycles), excellent cycling performance and superior rate capability. This outstanding electrochemical behavior can be attributed to the conductivity network of rGO, which improves the composite electrode conductivity, facilitates the diffusion and transfer of ions and prevents the aggregation and pulverization of Fe3O4/FeS particles during the charging and discharging processes. Moreover, the Fe3O4/FeS/rGO electrode surface is covered with a thin solid-electrolyte interface (SEI) film and the octahedral structure of Fe3O4/FeS particles is still clearly visible, which indicates that composite electrode has excellent interface stability. We believe that the design of this composite structure will provide a new perspective for the further study of other transition metal oxides for LIBs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Facile synthesis of an Fe3O4/FeO/Fe/C composite as a high-performance anode for lithium-ion batteries
    Li, Di
    Wang, Kangli
    Tao, Hongwei
    Hu, Xiaohong
    Cheng, Shijie
    Jiang, Kai
    RSC ADVANCES, 2016, 6 (92): : 89715 - 89720
  • [22] Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries
    Wang Suhang
    Zuo Jinxinl
    Li Yongliang
    Zhong Yiming
    Ren Xiangzhong
    Zhang Peixin
    Sun Lingna
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2023, 39 (02) : 240 - 245
  • [23] MnCr2O4/graphene composite as a high-performance anode material for lithium-ion batteries
    Babu, G. N. Suresh
    Kalaiselvi, N.
    ELECTROCHIMICA ACTA, 2021, 372
  • [24] Hierarchical Ultrafine Ni3V2O8 Nanoparticles Anchored on rGO as High-Performance Anode Materials for Lithium-Ion Batteries
    Yang, Mingyang
    Fu, Xuelian
    Zhang, Jianqiao
    Wang, Zhenyu
    Wang, Bingxue
    He, Liqing
    Wu, Zhiliang
    Cheng, Hua
    Pan, Hui
    Lu, Zhouguang
    ENERGY TECHNOLOGY, 2019, 7 (08)
  • [25] Graphene Encapsulated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries
    Zhang, Junhao
    Wan, Sheng
    Yan, Bo
    Wang, Liangbiao
    Qian, Yitai
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (06) : 4364 - 4369
  • [26] Reduced Graphene Oxide Decorated with Fe3O4 Nanoparticles as High Performance Anode for Lithium Ion Batteries
    Xu, Huai-liang
    Shen, Yang
    Bi, Hong
    MATERIALS FOR ENERGY CONVERSION AND STORAGE, 2012, 519 : 108 - 112
  • [27] Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance
    Wang, Suqing
    Zhang, Jingying
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2010, 195 (16) : 5379 - 5381
  • [28] Preparation and Characterization of High-Performance Fe3O4/RGO Anode for Supercapacitors
    Zhang, Weiguo
    Yang, Pan
    Wang, Hongzhi
    Sun, Shaofeng
    Yao, Suwei
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (09) : 6107 - 6120
  • [29] Yolk-double shell Fe3O4@C@C composite as high-performance anode materials for lithium-ion batteries
    Wang, Xuhui
    Wang, Jianying
    Chen, Zihe
    Yang, Kai
    Zhang, Zexian
    Shi, Zhuoxun
    Mei, Tao
    Qian, Jingwen
    Li, Jinhua
    Wang, Xianbao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 822
  • [30] Fe3O4/Fe/Carbon Composite and Its Application as Anode Material for Lithium-Ion Batteries
    Zhao, Xiuyun
    Xia, Dingguo
    Zheng, Kun
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (03) : 1350 - 1356