Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities

被引:29
作者
Dupaigne, L. [1 ]
Farina, A. [1 ]
机构
[1] Univ Picardie Jules Verne, CNRS, UMR 6140, LAMFA, F-80039 Amiens, France
关键词
Classification and qualitative properties of solutions; Stability; Critical exponents; R-N; UNBOUNDED-DOMAINS; RADIAL SOLUTIONS; OPERATORS;
D O I
10.1016/j.na.2008.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend our recent results on the classification of stable solutions of the equation -Delta u = f(u) in R(N), where f >= 0 is a general convex, non-decreasing function. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2882 / 2888
页数:7
相关论文
共 12 条
[1]   On the stability of radial solutions of semilinear elliptic equations in all of Rn [J].
Cabré, X ;
Capella, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (10) :769-774
[2]   WEAK TYPE ESTIMATES FOR SINGULAR VALUES AND NUMBER OF BOUND-STATES OF SCHRODINGER OPERATORS [J].
CWIKEL, M .
ANNALS OF MATHEMATICS, 1977, 106 (01) :93-100
[3]  
DANCER N, CLASSIFICATION SOLUT
[4]  
DUPAIGNE L, STABLE SOLUTIONS DEL
[5]   Liouville-type results for solutions of -: Δμ=|u|P-1u on unbounded domains of RN [J].
Farina, A .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (07) :415-418
[6]   On the classification of solutions of the Lane-Emden equation on unbounded domains of RN [J].
Farina, Alberto .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (05) :537-561
[7]   Stable solutions of -Δu = eu on RN [J].
Farina, Alberto .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (02) :63-66
[8]   ON THE SCHRODINGER-EQUATION AND THE EIGENVALUE PROBLEM [J].
LI, P ;
YAU, ST .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (03) :309-318
[9]   BOUNDS ON EIGENVALUES OF LAPLACE AND SCHROEDINGER OPERATORS [J].
LIEB, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (05) :751-753
[10]  
ROZENBLYUM GV, 1972, DOKL AKAD NAUK SSSR+, V202, P1012