On Intersections of Abelian and Nilpotent Subgroups in Finite Groups. I

被引:1
作者
Zenkov, V. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Ekaterinburg 620002, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
finite group; abelian subgroup; nilpotent subgroup; intersection of subgroups; Fitting subgroup;
D O I
10.1134/S0081543816090182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an abelian subgroup of a finite group G, and let B be a nilpotent subgroup of G. If G is solvable, then we prove that it contains an element g such that A boolean AND B-g <= F(G), where F(G) is the Fitting subgroup of G. If G is not solvable, we prove that a counterexample of minimal order to the conjecture that A boolean AND B-g <= F(G) for some element g from G is an almost simple group.
引用
收藏
页码:S174 / S177
页数:4
相关论文
共 6 条
  • [1] Dixon J. D., 1996, Graduate Text in Mathematics, V163
  • [2] Gorenstein D., 1982, FINITE SIMPLE GROUPS
  • [3] On nilpotent subgroups containing non-trivial normal subgroups
    Jamali, A. R.
    Viseh, M.
    [J]. JOURNAL OF GROUP THEORY, 2010, 13 (03) : 411 - 416
  • [4] Kargapolov M. I., 1972, FUNDAMENTALS THEORY
  • [5] INTERSECTION OF ABELIAN SUBGROUPS IN FINITE GROWS
    ZENKOV, VI
    [J]. MATHEMATICAL NOTES, 1994, 56 (1-2) : 869 - 871
  • [6] Zenkov VI., 1996, Fundam. Prikl. Mat, V2, P1