Minimum distance constrained sparse autoencoder network for hyperspectral unmixing

被引:5
作者
Zhao, Zhengang [1 ]
Hu, Dan [2 ,3 ]
Wang, Hao [1 ]
Yu, Xianchuan [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing, Peoples R China
[2] Univ North Carolina Chapel Hill, Dept Radiol, Chapel Hill, NC USA
[3] BRIC, Chapel Hill, NC USA
基金
中国国家自然科学基金;
关键词
hyperspectral unmixing; autoencoder network; deep learning; L-1/2; regularizer; minimum distance constraint; COMPONENT ANALYSIS; FAST ALGORITHM; CLASSIFICATION; IMAGES;
D O I
10.1117/1.JRS.14.048501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral unmixing is an important task in the analyses and applications of hyperspectral images. Recently, the autoencoder network has been intensively studied to unmix hyperspectral image, recovering the material signatures and their corresponding abundance maps from the hyperspectral pixels. However, the autoencoder network cannot get a unique solution since the loss function is nonconvex. In addition, the data often contain a lot of noise. To address these problems, we propose an autoencoder network, referred to as MDC-SAE, that introduces two different constraints to optimize the spectral unmixing problem. Specifically, we adopt the L-1/2 norm regularizer to constrict the abundance vectors, making them sparse. At the same time, we apply the minimum distance constraint on the endmember matrix to push each endmember toward its centroid. We evaluate our method on both synthetic and real data sets, and experimental results demonstrate that the proposed method can achieve the desired solutions and outperforms several state of the art methods. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:15
相关论文
共 32 条
[1]   Futuristic Greedy Approach to Sparse Unmixing of Hyperspectral Data [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :2157-2174
[2]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[5]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415
[6]   Nonlinear Unmixing of Hyperspectral Images [J].
Dobigeon, Nicolas ;
Tourneret, Jean-Yves ;
Richard, Cedric ;
Bermudez, Jose Carlos M. ;
McLaughlin, Stephen ;
Hero, Alfred O. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :82-94
[7]   Bayesian Estimation of Linear Mixtures Using the Normal Compositional Model. Application to Hyperspectral Imagery [J].
Eches, Olivier ;
Dobigeon, Nicolas ;
Mailhes, Corinne ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) :1403-1413
[8]   Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images [J].
Gong, Maoguo ;
Zhan, Tao ;
Zhang, Puzhao ;
Miao, Qiguang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05) :2658-2673
[9]  
Hoyer PO, 2004, J MACH LEARN RES, V5, P1457
[10]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039