Photonic Crystal Circular-Defect Microcavity Laser Designed for Wavelength Division Multiplexing

被引:19
作者
Xiong, Yifan [1 ]
Umeda, Takuma [1 ]
Zhang, Xiuyu [1 ]
Morifuji, Masato [2 ]
Kajii, Hirotake [3 ]
Maruta, Akihiro [4 ]
Kondow, Masahiko [2 ]
机构
[1] Osaka Univ, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
[3] Osaka Univ, Fac Engn, Suita, Osaka 5650871, Japan
[4] Osaka Univ, Dept Commun Engn, Suita, Osaka 5650871, Japan
关键词
Photonic crystal laser; circular-defect microcavity; wavelength division multiplexing; wavelength tuning; MODE;
D O I
10.1109/JSTQE.2018.2846053
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic crystal (PC) lasers with circular-defect (CirD) microcavity offer high-potential application in wavelength division multiplexing (WDM), and therefore, are a suitable candidate to realize intrachips optical communications. In this paper, a CirD laser for the WDM applications is designed for the first time by using the three-dimensional finite-difference time-domain method. For the realization of the WDM applications, it is critical to achieve the adequate high-quality (Q)-factor (>7142) in the bandwidth range over 20 nm, which is estimated from the characteristics of the gain medium and the coupling of the CirD cavity with a PC waveguide. After optimizing the laser structure, we achieved a constant high Q-factor of 15 000 within the bandwidth range of 25 nm. A proof-of-principle experiment of the lasing wavelength tuning was conducted by exploiting the CirD lasers with air/AlGaOx cladding layers under optical pumping conditions. The fabricated laser showed a single-mode lasing operation with the linewidth narrower than 0.07 nm (the resolution-limit of the optical spectrum analyzer) and side mode suppression ratio of similar to 20 dB. The wavelength tuning of a whispering-gallery mode over 20 nm was confirmed. The present results imply that there is a great potential of CirD laser for larger scale WDM integrated devices.
引用
收藏
页数:7
相关论文
共 24 条
[1]  
[Anonymous], Cisco Global Cloud Index: Forecast and Methodology
[2]   Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber [J].
Belli, Federico ;
Abdolvand, Amir ;
Chang, Wonkeun ;
Travers, John C. ;
Russell, Philip St. J. .
OPTICA, 2015, 2 (04) :292-300
[3]  
Crosnier G, 2017, NAT PHOTONICS, V11, P297, DOI [10.1038/nphoton.2017.56, 10.1038/NPHOTON.2017.56]
[4]   Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber [J].
Ermolov, A. ;
Mak, K. F. ;
Frosz, M. H. ;
Travers, J. C. ;
Russell, P. St. J. .
PHYSICAL REVIEW A, 2015, 92 (03)
[5]   Efficient photonic crystal cavity-waveguide couplers [J].
Faraon, Andrei ;
Waks, Edo ;
Englund, Dirk ;
Fushman, Ilya ;
Vuckovic, Jelena .
APPLIED PHYSICS LETTERS, 2007, 90 (07)
[6]   Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap [J].
Johnson, SG ;
Fan, S ;
Mekis, A ;
Joannopoulos, JD .
APPLIED PHYSICS LETTERS, 2001, 78 (22) :3388-3390
[7]  
Kondow M., 2015, P COLL C 3D MAT RES
[8]   Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip [J].
Kuramochi, Eiichi ;
Nozaki, Kengo ;
Shinya, Akihiko ;
Takeda, Koji ;
Sato, Tomonari ;
Matsuo, Shinji ;
Taniyama, Hideaki ;
Sumikura, Hisashi ;
Notomi, Masaya .
NATURE PHOTONICS, 2014, 8 (06) :474-481
[9]   Photonic crystal lasers using wavelength-scale embedded active region [J].
Matsuo, Shinji ;
Sato, Tomonari ;
Takeda, Koji ;
Shinya, Akihiko ;
Nozaki, Kengo ;
Kuramochi, Eiichi ;
Taniyama, Hideaki ;
Notomi, Masaya ;
Fujii, Takuro ;
Hasebe, Koichi ;
Kakitsuka, Takaaki .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (02)
[10]   Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides [J].
McNab, SJ ;
Moll, N ;
Vlasov, YA .
OPTICS EXPRESS, 2003, 11 (22) :2927-2939