Electrokinetic transport of monovalent and divalent cations in silica nanochannels

被引:30
作者
Prakash, Shaurya [1 ]
Zambrano, Harvey A. [2 ]
Rangharajan, Kaushik K. [1 ]
Rosenthal-Kim, Emily [1 ]
Vasquez, Nicolas [2 ]
Conlisk, A. T. [1 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, 201 W 19th Ave, Columbus, OH 43210 USA
[2] Univ Concepcion, Dept Chem Engn, Concepcion, Chile
基金
美国国家科学基金会;
关键词
Nanochannel; Electrokinetic flow; Monovalent ion; Divalent ion; Silica; Nanofluidics; MOLECULAR-DYNAMICS SIMULATIONS; ELECTROOSMOTIC FLOW; DNA TRANSLOCATION; NANOFLUIDIC INTERCONNECTS; HYDRATED RADIUS; IONIC TRANSPORT; ELECTRIC-FIELD; SURFACE; WATER; RECTIFICATION;
D O I
10.1007/s10404-015-1667-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrokinetic transport of aqueous electrolyte solutions in nanochannels and nanopores is considered important toward the understanding of fundamental ion transport in many biological systems, lab-on-chip, and organ-on-chip devices. Despite the overall importance of these systems and devices, detailed calculations showing velocity and concentration profiles for multi-component, multi-valent ionic species are limited. In this paper, molecular dynamics simulations were employed to compute velocity and concentration profiles for an electrolyte mixture containing sodium, magnesium, and chloride ions with water as the solvent in a similar to 7-nm-deep amorphous silica nanochannel. The results indicate that addition of trace quantities of divalent Mg2+ ions to monovalent (NaCl) electrolyte solutions while preserving overall system electroneutrality increases the maximum electroosmotic velocity of the solution by almost two times. Additionally, analyzing concentration profiles of individual ions revealed that Na+ was found to be preferentially attracted to the negatively charged silica wall in comparison with Mg2+ likely due to the hydrated divalent cation having a larger size compared to the hydrated monovalent cation.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 83 条
[1]   Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics [J].
Aguilar, Carlos A. ;
Craighead, Harold G. .
NATURE NANOTECHNOLOGY, 2013, 8 (10) :709-718
[2]  
Barthel J., 1982, Berichte der Bunsengesellschaft fur physikalische Chemie, V86, P264
[3]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Electrokinetics at Aqueous Interfaces without Mobile Charges [J].
Bonthuis, Douwe Jan ;
Horinek, Dominik ;
Bocquet, Lyderic ;
Netz, Roland R. .
LANGMUIR, 2010, 26 (15) :12614-12625
[6]  
Burgess J., 1999, Ions in Solution: Basic Principles of Chemical Interactions
[7]   Molecular dynamics simulations of concentrated aqueous electrolyte solutions [J].
Calero, Carles ;
Faraudo, Jordi ;
Aguilella-Arzo, Marcel .
MOLECULAR SIMULATION, 2011, 37 (02) :123-134
[8]  
Conlisk A.T., 2013, ESSENTIALS MICRO NAN
[9]   Water-silica force field for simulating nanodevices [J].
Cruz-Chu, Eduardo R. ;
Aksimentiev, Aleksei ;
Schulten, Klaus .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (43) :21497-21508
[10]   Effect of divalent ions on electroosmotic flow in microchannels [J].
Datta, S. ;
Conlisk, A. T. ;
Li, H. F. ;
Yoda, M. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (01) :65-74