Relaxing cosmological neutrino mass bounds with unstable neutrinos

被引:58
作者
Escudero, Miguel [1 ]
Lopez-Pavon, Jacobo [2 ,3 ]
Rius, Nuria [2 ,3 ]
Sandner, Stefan [2 ,3 ]
机构
[1] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England
[2] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain
[3] Univ Valencia, CSIC, IFIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics; MAGNETIC-MOMENT; DECAY; SYMMETRY; CONSTRAINTS; VIOLATION; MODELS;
D O I
10.1007/JHEP12(2020)119
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).
引用
收藏
页数:44
相关论文
共 153 条
[1]   Precision constraints on radiative neutrino decay with CMB spectral distortion [J].
Aalberts, Jelle L. ;
Ando, Shin'ichiro ;
Borg, Wouter M. ;
Broeils, Edwin ;
Broeils, Jennypher ;
Broeils, Stephen ;
Kavanagh, Bradley J. ;
Leguijt, Gijs ;
Reemst, Marnix ;
van Arneman, Dylan R. ;
Hoang Vu .
PHYSICAL REVIEW D, 2018, 98 (02)
[2]   Production and evolution of perturbations of sterile neutrino dark matter [J].
Abazajian, K .
PHYSICAL REVIEW D, 2006, 73 (06)
[3]   Visible decay of astrophysical neutrinos at IceCube [J].
Abdullahi, Asli ;
Denton, Peter B. .
PHYSICAL REVIEW D, 2020, 102 (02)
[4]   Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations [J].
Abe, K. ;
Akutsu, R. ;
Ali, A. ;
Alt, C. ;
Andreopoulos, C. ;
Anthony, L. ;
Antonova, M. ;
Aoki, S. ;
Ariga, A. ;
Ashida, Y. ;
Atkin, E. T. ;
Awataguchi, Y. ;
Ban, S. ;
Barbi, M. ;
Barker, G. J. ;
Barr, G. ;
Barry, C. ;
Batkiewicz-Kwasniak, M. ;
Beloshapkin, A. ;
Bench, F. ;
Berardi, V. ;
Berkman, S. ;
Berns, L. ;
Bhadra, S. ;
Bienstock, S. ;
Blondel, A. ;
Bolognesi, S. ;
Bourguille, B. ;
Boyd, S. B. ;
Brailsford, D. ;
Bravar, A. ;
Berguno, D. Bravo ;
Bronner, C. ;
Bubak, A. ;
Avanzini, M. Buizza ;
Calcutt, J. ;
Campbell, T. ;
Cao, S. ;
Cartwright, S. L. ;
Catanesi, M. G. ;
Cervera, A. ;
Chappell, A. ;
Checchia, C. ;
Cherdack, D. ;
Chikuma, N. ;
Christodoulou, G. ;
Coleman, J. ;
Collazuol, G. ;
Cook, L. ;
Coplowe, D. .
NATURE, 2020, 580 (7803) :339-+
[5]   Precision early universe thermodynamics made simple: Neff and neutrino decoupling in the Standard Model and beyond [J].
Abenza, Miguel Escudero .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (05)
[6]   Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments [J].
Abrahao, Thamys ;
Minakata, Hisakazu ;
Nunokawa, Hiroshi ;
Quiroga, Alexander A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11) :1-25
[7]   First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA [J].
Acero, M. A. ;
Adamson, P. ;
Aliaga, L. ;
Alion, T. ;
Allakhverdian, V ;
Altakarli, S. ;
Anfimov, N. ;
Antoshkin, A. ;
Aurisano, A. ;
Back, A. ;
Backhouse, C. ;
Baird, M. ;
Balashov, N. ;
Baldi, P. ;
Bambah, B. A. ;
Bashar, S. ;
Bays, K. ;
Bending, S. ;
Bernstein, R. ;
Bhatnagar, V ;
Bhuyan, B. ;
Bian, J. ;
Blackburn, T. ;
Blair, J. ;
Booth, A. C. ;
Bour, P. ;
Bromberg, C. ;
Buchanan, N. ;
Butkevich, A. ;
Calvez, S. ;
Campbell, M. ;
Carroll, T. J. ;
Catano-Mur, E. ;
Cedeno, A. ;
Childress, S. ;
Choudhary, B. C. ;
Chowdhury, B. ;
Coan, T. E. ;
Colo, M. ;
Cooper, J. ;
Corwin, L. ;
Cremonesi, L. ;
Davies, G. S. ;
Derwent, P. F. ;
Ding, P. ;
Djurcic, Z. ;
Doyle, D. ;
Dukes, E. C. ;
Duyang, H. ;
Edayath, S. .
PHYSICAL REVIEW LETTERS, 2019, 123 (15)
[8]   Planck 2018 results: I. Overview and the cosmological legacy of Planck [J].
Aghanim, N. ;
Akrami, Y. ;
Arroja, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Desert, F. -X. ;
Di Valentino, E. ;
Dickinson, C. ;
Diego, J. M. ;
Donzelli, S. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Efstathiou, G. ;
Elsner, F. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[9]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[10]  
Aghanim N., 2020, ASTRON ASTROPHYS, V641, pA6, DOI DOI 10.1051/0004-6361/201833910