A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.