Solving algebraic equations in terms of A-hypergeometric series

被引:35
作者
Sturmfels, B [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-365X(99)00126-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The roots of the general equation of degree n satisfy an A-hypergeometric system of differential equations in the sense of Gel'fand, Kapranov and Zelevinsky. We construct the n distinct A-hypergeometric series solutions for each of the 2(n-1) triangulations of the Newton segment. This works over any field whose characteristic is relatively prime to the lengths of the segments in the triangulation. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 11 条
  • [1] ADOLPHSON A, 1996, REND SEM MAT UNIV P, V95, P37
  • [2] [Anonymous], 1995, GRADUATE TEXTS MATH
  • [3] BIRKELAND R, 1927, MATH Z, V26, P565
  • [4] BRYLINSKI JL, 1996, GELF MATH SEMINAR, P45
  • [5] Residues in toric varieties
    Cattani, E
    Cox, D
    Dickenstein, A
    [J]. COMPOSITIO MATHEMATICA, 1997, 108 (01) : 35 - 76
  • [6] Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
  • [7] GENERALIZED EULER INTEGRALS AND A-HYPERGEOMETRIC FUNCTIONS
    GELFAND, IM
    KAPRANOV, MM
    ZELEVINSKY, AV
    [J]. ADVANCES IN MATHEMATICS, 1990, 84 (02) : 255 - 271
  • [8] HYPERGEOMETRIC-FUNCTIONS AND TORAL MANIFOLDS
    GELFAND, IM
    ZELEVINSKII, AV
    KAPRANOV, MM
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (02) : 94 - 106
  • [9] A POLYHEDRAL METHOD FOR SOLVING SPARSE POLYNOMIAL SYSTEMS
    HUBER, B
    STURMFELS, B
    [J]. MATHEMATICS OF COMPUTATION, 1995, 64 (212) : 1541 - 1555
  • [10] MAYR K, 1937, MONATSH MATH PHYS, V45, P280