REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES

被引:41
作者
Ipsen, I. C. F. [1 ]
Nadler, B. [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
eigenvalues; Hermitian matrix; eigenvalue gap; perturbation bounds; non-Hermitian perturbations; principal components; numerical continuation; RANK-ONE MODIFICATION; NON-LINEAR EQUATIONS; CONTINUATION; EIGENPROBLEM; INEQUALITY;
D O I
10.1137/070682745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present eigenvalue bounds for perturbations of Hermitian matrices and express the change in eigenvalues in terms of a projection of the perturbation onto a particular eigenspace, rather than in terms of the full perturbation. The perturbations we consider are Hermitian of rank one, and Hermitian or non-Hermitian with norm smaller than the spectral gap of a specific eigenvalue. Applications include principal component analysis under a spiked covariance model, and pseudo-arclength continuation methods for the solution of nonlinear systems.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 31 条
  • [1] Anderson T. W., 1984, An introduction to multivariate statistical analysis, V499
  • [2] ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS
    ANDERSON, TW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01): : 122 - &
  • [3] [Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
  • [4] [Anonymous], 2002, PRINCIPAL COMPONENT
  • [5] RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM
    BUNCH, JR
    NIELSEN, CP
    SORENSEN, DC
    [J]. NUMERISCHE MATHEMATIK, 1978, 31 (01) : 31 - 48
  • [6] NEWTON-LIKE PSEUDO-ARC-LENGTH METHODS FOR COMPUTING SIMPLE TURNING-POINTS
    CHAN, TF
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01): : 135 - 148
  • [7] ARC-LENGTH CONTINUATION AND MULTI-GRID TECHNIQUES FOR NON-LINEAR ELLIPTIC EIGENVALUE PROBLEMS
    CHAN, TFC
    KELLER, HB
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (02): : 173 - 194
  • [8] CHATELIN F, 1986, VALEURS PROPRES MATR
  • [9] Condition estimates for pseudo-arclength continuation
    Dickson, K. I.
    Kelley, C. T.
    Ipsen, I. C. F.
    Kevrekidis, I. G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) : 263 - 276
  • [10] On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices
    Dozier, R. Brent
    Silverstein, Jack W.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (04) : 678 - 694