JACOBIANS IN ISOGENY CLASSES OF ABELIAN SURFACES OVER FINITE FIELDS

被引:26
作者
Howe, Everett W. [1 ]
Nar, Enric [2 ]
Ritzenthaler, Christophe [3 ]
机构
[1] Ctr Commun Res, San Diego, CA 92121 USA
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[3] CNRS, Inst Math Luminy, UMR 6206, F-13288 Marseille, France
关键词
Curve; Jacobian; abelian surface; zeta function; Weil polynomial; Weil number; GENUS; 2; SUPERSINGULAR CURVES; RATIONAL-POINTS; NUMBER; CODES; NONEXISTENCE;
D O I
10.5802/aif.2430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete answer to the question of which polynomials occur as the characteristic polynomials of Frobenius for genus-2 curves over finite fields.
引用
收藏
页码:239 / 289
页数:51
相关论文
共 30 条
[1]   Abelian surfaces of GL2-type as Jacobians of curves [J].
González, J ;
Rotger, V .
ACTA ARITHMETICA, 2005, 116 (03) :263-287
[2]  
GURALNICK RM, 2007, P AR GEOM C IN PRESS
[3]  
HASHIMOTO KIICHIRO, 1981, J FAC SCI U TOKYO IA, V28, P695
[4]  
HASHIMOTO KIICHIRO, 1983, J FAC SCI U TOKYO IA, V30, P393
[5]  
HASHIMOTO KIICHIRO, 1980, J FS U TOKYO, V27, P549
[6]   ON POSITIVE DEFINITE HERMITIAN-FORMS [J].
HOFFMANN, DW .
MANUSCRIPTA MATHEMATICA, 1991, 71 (04) :399-429
[7]  
HOWE E, 2001, PROGR MATH, V195, P203
[8]  
Howe EA, 2008, CONTEMP MATH, V463, P49
[9]  
Howe EW, 2008, MATH RES LETT, V15, P121
[10]   On the non-existence of certain curves of genus two [J].
Howe, EW .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :581-592