Analysis of discrete data by Conway-Maxwell Poisson distribution

被引:21
|
作者
Gupta, Ramesh C. [1 ]
Sim, S. Z. [2 ]
Ong, S. H. [2 ]
机构
[1] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
[2] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
Overdispersion; Underdispersion; Failure rate; Stochastic comparisons; Score test; PROBABILITY GENERATING FUNCTION; POWER-SERIES DISTRIBUTION; COUNT DATA; PARAMETER-ESTIMATION; MODEL; MIXTURES;
D O I
10.1007/s10182-014-0226-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we further study the Conway-Maxwell Poisson distribution having one more parameter than the Poisson distribution and compare it with the Poisson distribution with respect to some stochastic orderings used in reliability theory. Likelihood ratio test and the score test are developed to test the importance of this additional parameter. Simulation studies are carried out to examine the performance of the two tests. Two examples are presented, one showing overdispersion and the other showing underdispersion, to illustrate the procedure. It is shown that the COM-Poisson model fits better than the generalized Poisson distribution.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [1] Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data
    Sim, Shin Zhu
    Gupta, Ramesh C.
    Ong, Seng Huat
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2018, 14 (01):
  • [2] Analysis of discrete data by Conway–Maxwell Poisson distribution
    Ramesh C. Gupta
    S. Z. Sim
    S. H. Ong
    AStA Advances in Statistical Analysis, 2014, 98 : 327 - 343
  • [3] Compound Conway-Maxwell Poisson Gamma Distribution: Properties and Estimation
    Merupula, Jahnavi
    Vaidyanathan, V. S.
    AUSTRIAN JOURNAL OF STATISTICS, 2024, 53 (02) : 32 - 47
  • [4] Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson Variability
    Wei, Ganchao
    Stevenson, Ian H.
    NEURAL COMPUTATION, 2023, 35 (07) : 1187 - 1208
  • [5] A homogeneously weighted moving average control chart for Conway-Maxwell Poisson distribution
    Adeoti, Olatunde Adebayo
    Malela-Majika, Jean-Claude
    Shongwe, Sandile Charles
    Aslam, Muhammad
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (12) : 3090 - 3119
  • [6] A useful distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution
    Shmueli, G
    Minka, TP
    Kadane, JB
    Borle, S
    Boatwright, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 : 127 - 142
  • [7] Stein estimation in the Conway-Maxwell Poisson model with correlated regressors
    Sami, Faiza
    Amin, Muhammad
    Aljeddani, Sadiah M. A.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2024, 11 (07): : 49 - 56
  • [8] Conway-Maxwell Poisson Distribution: Some New Results and Minimum Variance Unbiased Estimation
    Merupula, Jahnavi
    Vaidyanathan, V. S.
    STATISTICS AND APPLICATIONS, 2023, 21 (01): : 217 - 230
  • [9] Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model
    Francis, Royce A.
    Geedipally, Srinivas Reddy
    Guikema, Seth D.
    Dhavala, Soma Sekhar
    Lord, Dominique
    LaRocca, Sarah
    RISK ANALYSIS, 2012, 32 (01) : 167 - 183
  • [10] Bivariate Conway-Maxwell Poisson Distributions with Given Marginals and Correlation
    Ong, Seng Huat
    Gupta, Ramesh C.
    Ma, Tiefeng
    Sim, Shin Zhu
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2020, 15 (01)