Reverse nearest neighbor search in metric spaces

被引:67
作者
Tao, Yufei [1 ]
Yiu, Man Lung
Mamoulis, Nikos
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
reverse nearest neighbor; metric space;
D O I
10.1109/TKDE.2006.148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a set D of objects, a reverse nearest neighbor (RNN) query returns the objects o in D such that o is closer to a query object q than to any other object in D, according to a certain similarity metric. The existing RNN solutions are not sufficient because they either 1) rely on precomputed information that is expensive to maintain in the presence of updates or 2) are applicable only when the data consists of "Euclidean objects" and similarity is measured using the L-2 norm. In this paper, we present the first algorithms for efficient RNN search in generic metric spaces. Our techniques require no detailed representations of objects, and can be applied as long as their mutual distances can be computed and the distance metric satisfies the triangle inequality. We confirm the effectiveness of the proposed methods with extensive experiments.
引用
收藏
页码:1239 / 1252
页数:14
相关论文
共 50 条
[41]   A new generalization of metric spaces: rectangular M-metric spaces [J].
Nihal Yılmaz Özgür ;
Nabil Mlaiki ;
Nihal Taş ;
Nizar Souayah .
Mathematical Sciences, 2018, 12 :223-233
[42]   TANGENT SPACES TO GENERAL METRIC SPACES [J].
Dovgoshey, Oleksiy ;
Martio, Olli .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 56 (02) :137-155
[43]   An Eigenvalue-based Pivot Selection Strategy for Improving Search Efficiency in Metric Spaces [J].
Kim, Sung-Hwan ;
Lee, Da-Young ;
Cho, Hwan-Gue .
2016 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2016, :207-214
[44]   Frames for Metric Spaces [J].
Krishna, K. Mahesh ;
Johnson, P. Sam .
RESULTS IN MATHEMATICS, 2022, 77 (01)
[45]   Frames for Metric Spaces [J].
K. Mahesh Krishna ;
P. Sam Johnson .
Results in Mathematics, 2022, 77
[46]   τ-metric spaces and convergence [J].
Georgiou, D. ;
Kougias, I. ;
Megaritis, A. ;
Sereti, F. .
FILOMAT, 2024, 38 (21) :7525-7539
[47]   Barriers in metric spaces [J].
Dress, Andreas W. M. ;
Moulton, Vincent ;
Spillner, Andreas ;
Wu, Taoyang .
APPLIED MATHEMATICS LETTERS, 2009, 22 (08) :1150-1153
[48]   Ultrafilters on metric spaces [J].
Protasov, I. V. .
TOPOLOGY AND ITS APPLICATIONS, 2014, 164 :207-214
[49]   THE MAGNITUDE OF METRIC SPACES [J].
Leinster, Tom .
DOCUMENTA MATHEMATICA, 2013, 18 :857-905
[50]   General Fixed Point Theorems on Metric Spaces and 2-metric Spaces [J].
Tran Van An ;
Nguyen Van Dung ;
Vo Thi Le Hang .
FILOMAT, 2014, 28 (10) :2037-2045