Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System

被引:61
作者
He, Xiaoming [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
关键词
Klein-Gordon-Maxwell equation; Large energy solutions; Variational methods; SOLITARY WAVES; EXISTENCE; NONEXISTENCE;
D O I
10.1007/s10440-013-9845-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear Klein-Gordon-Maxwell system {-Delta u + V(x)u - (2 omega + phi)phi u = f(x, u), x is an element of R-3, Delta phi = (omega + phi)u(2), x is an element of R-3. By means of a variant fountain theorem and the symmetric mountain pass theorem, we obtain the existence of infinitely many large energy solutions.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1986, CBMS REG C SER MATH
[2]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[3]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[4]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[5]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[8]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[9]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[10]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490