Partial Discharge Pattern Recognition Using Multi-scale Feature Extraction and Support Vector Machine

被引:0
作者
Chan, Jeffery C. [1 ]
Ma, Hui [1 ]
Saha, Tapan K. [1 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
来源
2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES) | 2013年
关键词
Discrete wavelet transform (DWT); empirical mode decomposition (EMD); feature extraction; high voltage (HV) equipment; partial discharge (PD); pattern recognition; support vector machine (SVM); CLASSIFICATION; DECOMPOSITION; TRANSFORM; SIGNALS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An accurate interpretation of partial discharge (PD) signals in high voltage (HV) equipment provides crucial information for assessing the insulation conditions. To automate the interpretation process, feature extraction of PD signals and pattern recognition using the extracted features are required. This paper adopts discrete wavelet transform (DWT) and empirical mode decomposition (EMD) for signal decomposition and feature extraction on the PD signals obtained from different insulation defects. Support vector machine (SVM) is then used for classifying the features. Results indicate that features extracted from decomposed signals provide higher classification accuracy when compared with the conventional method that the features are extracted from original PD signals.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 2011, Neural Networks and Learning Machines
[2]  
[Anonymous], 2000, 60270 IEC
[3]   FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning [J].
Batuwita, Rukshan ;
Palade, Vasile .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (03) :558-571
[4]   Denoising of partial discharge signals in wavelet packets domain [J].
Chang, CS ;
Jin, J ;
Kumar, S ;
Su, Q ;
Hoshino, T ;
Hanai, M ;
Kobayashi, N .
IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 2005, 152 (03) :129-140
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]   Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network [J].
Evagorou, D. ;
Kyprianou, A. ;
Lewin, P. L. ;
Stavrou, A. ;
Efthymiou, V. ;
Metaxas, A. C. ;
Georghiou, G. E. .
IET SCIENCE MEASUREMENT & TECHNOLOGY, 2010, 4 (03) :177-192
[7]  
Gacek A, 2012, ECG SIGNAL PROCESSING, CLASSIFICATION AND INTERPRETATION: A COMPREHENSIVE FRAMEWORK OF COMPUTATIONAL INTELLIGENCE, P1, DOI 10.1007/978-0-85729-868-3
[8]   DIGITAL ANALYSIS OF PARTIAL DISCHARGES [J].
GULSKI, E .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 1995, 2 (05) :822-837
[9]   COMPUTER-AIDED RECOGNITION OF DISCHARGE SOURCES [J].
GULSKI, E ;
KREUGER, FH .
IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1992, 27 (01) :82-92
[10]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995