Spatially regularized estimation for the analysis of dynamic contrast-enhanced magnetic resonance imaging data

被引:9
|
作者
Sommer, Julia C. [1 ]
Gertheiss, Jan [2 ]
Schmid, Volker J. [1 ]
机构
[1] Univ Munich, Dept Stat, D-80539 Munich, Germany
[2] Univ Gottingen, Dept Anim Sci, D-37073 Gottingen, Germany
关键词
DCE-MRI; elastic net; model selection; multi-compartment model; spatially penalized estimation; MODELS; MRI; REGRESSION; INFERENCE; SELECTION;
D O I
10.1002/sim.5997
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Competing compartment models of different complexities have been used for the quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging data. We present a spatial elastic net approach that allows to estimate the number of compartments for each voxel such that the model complexity is not fixed apriori. A multi-compartment approach is considered, which is translated into a restricted least square model selection problem. This is done by using a set of basis functions for a given set of candidate rate constants. The form of the basis functions is derived from a kinetic model and thus describes the contribution of a specific compartment. Using a spatial elastic net estimator, we chose a sparse set of basis functions per voxel, and hence, rate constants of compartments. The spatial penalty takes into account the voxel structure of an image and performs better than a penalty treating voxels independently. The proposed estimation method is evaluated for simulated images and applied to an in vivo dataset. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1029 / 1041
页数:13
相关论文
共 50 条
  • [31] Normalizing Flow-Based Distribution Estimation of Pharmacokinetic Parameters in Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Fang, Ke
    Wang, Zejun
    Xia, Qi
    Liu, Yingchao
    Wang, Bao
    Cheng, Zhaowei
    Cheng, Jian
    Jin, Xinyu
    Bai, Ruiliang
    Li, Lanjuan
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (03) : 780 - 791
  • [32] Hemodynamic Parameter Estimation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Tikhonov Regularization Method.
    Li, Y.
    Gao, M.
    He, R.
    Ren, Y.
    Liu, H.
    Guo, L.
    Xu, G.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [33] Pharmacokinetic analysis for the differentiation of pituitary microadenoma subtypes through dynamic contrast-enhanced magnetic resonance imaging
    Zhai, Jian
    Zheng, Wenqiang
    Zhang, Qin
    Wu, Jiangfen
    Zhang, Xuexi
    ONCOLOGY LETTERS, 2019, 17 (05) : 4237 - 4244
  • [34] Diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging for breast cancer detection: An update meta-analysis
    Dong, Honghuan
    Kang, Linqing
    Cheng, Sijia
    Zhang, Rongju
    THORACIC CANCER, 2021, 12 (23) : 3201 - 3207
  • [35] A direct comparison of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer detection and prediction of aggressiveness
    Baur, Alexander D. J.
    Schwabe, Julia
    Rogasch, Julian
    Maxeiner, Andreas
    Penzkofer, Tobias
    Stephan, Carsten
    Rudl, Marc
    Hamm, Bernd
    Jung, Ernst-Michael
    Fischer, Thom
    EUROPEAN RADIOLOGY, 2018, 28 (05) : 1949 - 1960
  • [36] Variations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Evaluation of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge
    Huang, Wei
    Li, Xin
    Chen, Yiyi
    Li, Xia
    Chang, Ming-Ching
    Oborski, Matthew J.
    Malyarenko, Dariya I.
    Muzi, Mark
    Jajamovich, Guido H.
    Fedorov, Andriy
    Tudorica, Alina
    Gupta, Sandeep N.
    Laymon, Charles M.
    Marro, Kenneth I.
    Dyvorne, Hadrien A.
    Miller, James V.
    Barbodiak, Daniel P.
    Chenevert, Thomas L.
    Yankeelov, Thomas E.
    Mountz, James M.
    Kinahan, Paul E.
    Kikinis, Ron
    Taouli, Bachir
    Fennessy, Fiona
    Kalpathy-Cramer, Jayashree
    TRANSLATIONAL ONCOLOGY, 2014, 7 (01): : 153 - 166
  • [37] Radiomics Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
    Liu, Jia
    Sun, Dong
    Chen, Linli
    Fang, Zheng
    Song, Weixiang
    Guo, Dajing
    Ni, Tiangen
    Liu, Chuan
    Feng, Lin
    Xia, Yuwei
    Zhang, Xiong
    Li, Chuanming
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [38] Dynamic contrast-enhanced magnetic resonance imaging parameters independent of baseline T10 values
    Guo, Jun-Yu
    Reddick, Wilburn E.
    Rosen, Mark A.
    Song, Hee. Kwon
    MAGNETIC RESONANCE IMAGING, 2009, 27 (09) : 1208 - 1215
  • [39] Value of dynamic contrast-enhanced magnetic resonance imaging in predicting lymph node metastasis in cervical cancer
    Huang, Junwen
    Song, Jiacheng
    Li, Yan
    Ma, Zhanlong
    Shi, Haibin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (09): : 9851 - 9857
  • [40] Peripheral Nerve Perfusion by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Demonstration of Feasibility
    Baeumer, Philipp
    Reimann, Maximilian
    Decker, Clemens
    Radbruch, Alexander
    Bendszus, Martin
    Heiland, Sabine
    Pham, Mirko
    INVESTIGATIVE RADIOLOGY, 2014, 49 (08) : 518 - 523